| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fbflim.3 |
|
| 2 |
1
|
fbflim |
|
| 3 |
|
topontop |
|
| 4 |
3
|
ad2antrr |
|
| 5 |
|
simpr |
|
| 6 |
|
toponuni |
|
| 7 |
6
|
ad2antrr |
|
| 8 |
5 7
|
eleqtrd |
|
| 9 |
|
eqid |
|
| 10 |
9
|
isneip |
|
| 11 |
4 8 10
|
syl2anc |
|
| 12 |
|
simpr |
|
| 13 |
11 12
|
biimtrdi |
|
| 14 |
|
r19.29 |
|
| 15 |
|
pm3.45 |
|
| 16 |
15
|
imp |
|
| 17 |
|
sstr2 |
|
| 18 |
17
|
com12 |
|
| 19 |
18
|
reximdv |
|
| 20 |
19
|
impcom |
|
| 21 |
16 20
|
syl |
|
| 22 |
21
|
rexlimivw |
|
| 23 |
14 22
|
syl |
|
| 24 |
23
|
ex |
|
| 25 |
13 24
|
syl9 |
|
| 26 |
25
|
ralrimdv |
|
| 27 |
4
|
adantr |
|
| 28 |
|
simprl |
|
| 29 |
|
simprr |
|
| 30 |
|
opnneip |
|
| 31 |
27 28 29 30
|
syl3anc |
|
| 32 |
|
sseq2 |
|
| 33 |
32
|
rexbidv |
|
| 34 |
33
|
rspcv |
|
| 35 |
31 34
|
syl |
|
| 36 |
35
|
expr |
|
| 37 |
36
|
com23 |
|
| 38 |
37
|
ralrimdva |
|
| 39 |
26 38
|
impbid |
|
| 40 |
39
|
pm5.32da |
|
| 41 |
2 40
|
bitrd |
|