Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Stanislas Polu
IMO Problems
IMO 1972 B2
fco2d
Next ⟩
wfximgfd
Metamath Proof Explorer
Ascii
Unicode
Theorem
fco2d
Description:
Natural deduction form of
fco2
.
(Contributed by
Stanislas Polu
, 9-Mar-2020)
Ref
Expression
Hypotheses
fco2d.1
⊢
φ
→
G
:
A
⟶
B
fco2d.2
⊢
φ
→
F
↾
B
:
B
⟶
C
Assertion
fco2d
⊢
φ
→
F
∘
G
:
A
⟶
C
Proof
Step
Hyp
Ref
Expression
1
fco2d.1
⊢
φ
→
G
:
A
⟶
B
2
fco2d.2
⊢
φ
→
F
↾
B
:
B
⟶
C
3
fco2
⊢
F
↾
B
:
B
⟶
C
∧
G
:
A
⟶
B
→
F
∘
G
:
A
⟶
C
4
2
1
3
syl2anc
⊢
φ
→
F
∘
G
:
A
⟶
C