Metamath Proof Explorer


Theorem fco2d

Description: Natural deduction form of fco2 . (Contributed by Stanislas Polu, 9-Mar-2020)

Ref Expression
Hypotheses fco2d.1 φG:AB
fco2d.2 φFB:BC
Assertion fco2d φFG:AC

Proof

Step Hyp Ref Expression
1 fco2d.1 φG:AB
2 fco2d.2 φFB:BC
3 fco2 FB:BCG:ABFG:AC
4 2 1 3 syl2anc φFG:AC