Metamath Proof Explorer


Theorem fcoresf1b

Description: A composition is injective iff the restrictions of its components to the minimum domains are injective. (Contributed by GL and AV, 7-Oct-2024)

Ref Expression
Hypotheses fcores.f φF:AB
fcores.e E=ranFC
fcores.p P=F-1C
fcores.x X=FP
fcores.g φG:CD
fcores.y Y=GE
Assertion fcoresf1b φGF:P1-1DX:P1-1EY:E1-1D

Proof

Step Hyp Ref Expression
1 fcores.f φF:AB
2 fcores.e E=ranFC
3 fcores.p P=F-1C
4 fcores.x X=FP
5 fcores.g φG:CD
6 fcores.y Y=GE
7 1 adantr φGF:P1-1DF:AB
8 5 adantr φGF:P1-1DG:CD
9 simpr φGF:P1-1DGF:P1-1D
10 7 2 3 4 8 6 9 fcoresf1 φGF:P1-1DX:P1-1EY:E1-1D
11 10 ex φGF:P1-1DX:P1-1EY:E1-1D
12 f1co Y:E1-1DX:P1-1EYX:P1-1D
13 12 ancoms X:P1-1EY:E1-1DYX:P1-1D
14 1 2 3 4 5 6 fcores φGF=YX
15 f1eq1 GF=YXGF:P1-1DYX:P1-1D
16 14 15 syl φGF:P1-1DYX:P1-1D
17 13 16 imbitrrid φX:P1-1EY:E1-1DGF:P1-1D
18 11 17 impbid φGF:P1-1DX:P1-1EY:E1-1D