Metamath Proof Explorer


Theorem fcoresf1lem

Description: Lemma for fcoresf1 . (Contributed by AV, 18-Sep-2024)

Ref Expression
Hypotheses fcores.f φ F : A B
fcores.e E = ran F C
fcores.p P = F -1 C
fcores.x X = F P
fcores.g φ G : C D
fcores.y Y = G E
Assertion fcoresf1lem φ Z P G F Z = Y X Z

Proof

Step Hyp Ref Expression
1 fcores.f φ F : A B
2 fcores.e E = ran F C
3 fcores.p P = F -1 C
4 fcores.x X = F P
5 fcores.g φ G : C D
6 fcores.y Y = G E
7 1 2 3 4 5 6 fcores φ G F = Y X
8 7 fveq1d φ G F Z = Y X Z
9 8 adantr φ Z P G F Z = Y X Z
10 1 2 3 4 fcoreslem3 φ X : P onto E
11 fof X : P onto E X : P E
12 10 11 syl φ X : P E
13 12 adantr φ Z P X : P E
14 simpr φ Z P Z P
15 13 14 fvco3d φ Z P Y X Z = Y X Z
16 9 15 eqtrd φ Z P G F Z = Y X Z