Metamath Proof Explorer


Theorem fcoresf1lem

Description: Lemma for fcoresf1 . (Contributed by AV, 18-Sep-2024)

Ref Expression
Hypotheses fcores.f φF:AB
fcores.e E=ranFC
fcores.p P=F-1C
fcores.x X=FP
fcores.g φG:CD
fcores.y Y=GE
Assertion fcoresf1lem φZPGFZ=YXZ

Proof

Step Hyp Ref Expression
1 fcores.f φF:AB
2 fcores.e E=ranFC
3 fcores.p P=F-1C
4 fcores.x X=FP
5 fcores.g φG:CD
6 fcores.y Y=GE
7 1 2 3 4 5 6 fcores φGF=YX
8 7 fveq1d φGFZ=YXZ
9 8 adantr φZPGFZ=YXZ
10 1 2 3 4 fcoreslem3 φX:PontoE
11 fof X:PontoEX:PE
12 10 11 syl φX:PE
13 12 adantr φZPX:PE
14 simpr φZPZP
15 13 14 fvco3d φZPYXZ=YXZ
16 9 15 eqtrd φZPGFZ=YXZ