Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
General auxiliary theorems (1)
Functions - extension
fcoresf1lem
Next ⟩
fcoresf1
Metamath Proof Explorer
Ascii
Unicode
Theorem
fcoresf1lem
Description:
Lemma for
fcoresf1
.
(Contributed by
AV
, 18-Sep-2024)
Ref
Expression
Hypotheses
fcores.f
⊢
φ
→
F
:
A
⟶
B
fcores.e
⊢
E
=
ran
⁡
F
∩
C
fcores.p
⊢
P
=
F
-1
C
fcores.x
⊢
X
=
F
↾
P
fcores.g
⊢
φ
→
G
:
C
⟶
D
fcores.y
⊢
Y
=
G
↾
E
Assertion
fcoresf1lem
⊢
φ
∧
Z
∈
P
→
G
∘
F
⁡
Z
=
Y
⁡
X
⁡
Z
Proof
Step
Hyp
Ref
Expression
1
fcores.f
⊢
φ
→
F
:
A
⟶
B
2
fcores.e
⊢
E
=
ran
⁡
F
∩
C
3
fcores.p
⊢
P
=
F
-1
C
4
fcores.x
⊢
X
=
F
↾
P
5
fcores.g
⊢
φ
→
G
:
C
⟶
D
6
fcores.y
⊢
Y
=
G
↾
E
7
1
2
3
4
5
6
fcores
⊢
φ
→
G
∘
F
=
Y
∘
X
8
7
fveq1d
⊢
φ
→
G
∘
F
⁡
Z
=
Y
∘
X
⁡
Z
9
8
adantr
⊢
φ
∧
Z
∈
P
→
G
∘
F
⁡
Z
=
Y
∘
X
⁡
Z
10
1
2
3
4
fcoreslem3
⊢
φ
→
X
:
P
⟶
onto
E
11
fof
⊢
X
:
P
⟶
onto
E
→
X
:
P
⟶
E
12
10
11
syl
⊢
φ
→
X
:
P
⟶
E
13
12
adantr
⊢
φ
∧
Z
∈
P
→
X
:
P
⟶
E
14
simpr
⊢
φ
∧
Z
∈
P
→
Z
∈
P
15
13
14
fvco3d
⊢
φ
∧
Z
∈
P
→
Y
∘
X
⁡
Z
=
Y
⁡
X
⁡
Z
16
9
15
eqtrd
⊢
φ
∧
Z
∈
P
→
G
∘
F
⁡
Z
=
Y
⁡
X
⁡
Z