Metamath Proof Explorer


Theorem fdivval

Description: The quotient of two functions into the complex numbers. (Contributed by AV, 15-May-2020)

Ref Expression
Assertion fdivval F V G W F / f G = F ÷ f G supp 0 G

Proof

Step Hyp Ref Expression
1 df-fdiv / f = f V , g V f ÷ f g supp 0 g
2 1 a1i F V G W / f = f V , g V f ÷ f g supp 0 g
3 oveq12 f = F g = G f ÷ f g = F ÷ f G
4 oveq1 g = G g supp 0 = G supp 0
5 4 adantl f = F g = G g supp 0 = G supp 0
6 3 5 reseq12d f = F g = G f ÷ f g supp 0 g = F ÷ f G supp 0 G
7 6 adantl F V G W f = F g = G f ÷ f g supp 0 g = F ÷ f G supp 0 G
8 elex F V F V
9 8 adantr F V G W F V
10 elex G W G V
11 10 adantl F V G W G V
12 funmpt Fun x dom F dom G F x G x
13 offval3 F V G W F ÷ f G = x dom F dom G F x G x
14 13 funeqd F V G W Fun F ÷ f G Fun x dom F dom G F x G x
15 12 14 mpbiri F V G W Fun F ÷ f G
16 ovex G supp 0 V
17 resfunexg Fun F ÷ f G G supp 0 V F ÷ f G supp 0 G V
18 15 16 17 sylancl F V G W F ÷ f G supp 0 G V
19 2 7 9 11 18 ovmpod F V G W F / f G = F ÷ f G supp 0 G