Metamath Proof Explorer


Theorem fdmfisuppfi

Description: The support of a function with a finite domain is always finite. (Contributed by AV, 27-Apr-2019)

Ref Expression
Hypotheses fdmfisuppfi.f φF:DR
fdmfisuppfi.d φDFin
fdmfisuppfi.z φZV
Assertion fdmfisuppfi φFsuppZFin

Proof

Step Hyp Ref Expression
1 fdmfisuppfi.f φF:DR
2 fdmfisuppfi.d φDFin
3 fdmfisuppfi.z φZV
4 1 2 fexd φFV
5 suppimacnv FVZVFsuppZ=F-1VZ
6 4 3 5 syl2anc φFsuppZ=F-1VZ
7 2 1 fisuppfi φF-1VZFin
8 6 7 eqeltrd φFsuppZFin