Metamath Proof Explorer


Theorem fdmrn

Description: A different way to write F is a function. (Contributed by Thierry Arnoux, 7-Dec-2016)

Ref Expression
Assertion fdmrn FunFF:domFranF

Proof

Step Hyp Ref Expression
1 ssid ranFranF
2 df-f F:domFranFFFndomFranFranF
3 1 2 mpbiran2 F:domFranFFFndomF
4 eqid domF=domF
5 df-fn FFndomFFunFdomF=domF
6 4 5 mpbiran2 FFndomFFunF
7 3 6 bitr2i FunFF:domFranF