Metamath Proof Explorer


Theorem feqresmpt

Description: Express a restricted function as a mapping. (Contributed by Mario Carneiro, 18-May-2016)

Ref Expression
Hypotheses feqmptd.1 φF:AB
feqresmpt.2 φCA
Assertion feqresmpt φFC=xCFx

Proof

Step Hyp Ref Expression
1 feqmptd.1 φF:AB
2 feqresmpt.2 φCA
3 1 2 fssresd φFC:CB
4 3 feqmptd φFC=xCFCx
5 fvres xCFCx=Fx
6 5 mpteq2ia xCFCx=xCFx
7 4 6 eqtrdi φFC=xCFx