Metamath Proof Explorer


Theorem feqresmptf

Description: Express a restricted function as a mapping. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses feqresmptf.1 _xF
feqresmptf.2 φF:AB
feqresmptf.3 φCA
Assertion feqresmptf φFC=xCFx

Proof

Step Hyp Ref Expression
1 feqresmptf.1 _xF
2 feqresmptf.2 φF:AB
3 feqresmptf.3 φCA
4 nfcv _xC
5 1 4 nfres _xFC
6 2 3 fssresd φFC:CB
7 4 5 6 feqmptdf φFC=xCFCx
8 fvres xCFCx=Fx
9 8 mpteq2ia xCFCx=xCFx
10 7 9 eqtrdi φFC=xCFx