Metamath Proof Explorer


Theorem ffnaov

Description: An operation maps to a class to which all values belong, analogous to ffnov . (Contributed by Alexander van der Vekens, 26-May-2017)

Ref Expression
Assertion ffnaov F:A×BCFFnA×BxAyBxFyC

Proof

Step Hyp Ref Expression
1 ffnafv F:A×BCFFnA×BwA×BF'''wC
2 afveq2 w=xyF'''w=F'''xy
3 df-aov xFy=F'''xy
4 2 3 eqtr4di w=xyF'''w=xFy
5 4 eleq1d w=xyF'''wCxFyC
6 5 ralxp wA×BF'''wCxAyBxFyC
7 6 anbi2i FFnA×BwA×BF'''wCFFnA×BxAyBxFyC
8 1 7 bitri F:A×BCFFnA×BxAyBxFyC