Metamath Proof Explorer


Theorem ffnafv

Description: A function maps to a class to which all values belong, analogous to ffnfv . (Contributed by Alexander van der Vekens, 25-May-2017)

Ref Expression
Assertion ffnafv F:ABFFnAxAF'''xB

Proof

Step Hyp Ref Expression
1 ffn F:ABFFnA
2 fafvelcdm F:ABxAF'''xB
3 2 ralrimiva F:ABxAF'''xB
4 1 3 jca F:ABFFnAxAF'''xB
5 simpl FFnAxAF'''xBFFnA
6 afvelrnb0 FFnAyranFxAF'''x=y
7 nfra1 xxAF'''xB
8 nfv xyB
9 rsp xAF'''xBxAF'''xB
10 eleq1 F'''x=yF'''xByB
11 10 biimpcd F'''xBF'''x=yyB
12 9 11 syl6 xAF'''xBxAF'''x=yyB
13 7 8 12 rexlimd xAF'''xBxAF'''x=yyB
14 6 13 sylan9 FFnAxAF'''xByranFyB
15 14 ssrdv FFnAxAF'''xBranFB
16 df-f F:ABFFnAranFB
17 5 15 16 sylanbrc FFnAxAF'''xBF:AB
18 4 17 impbii F:ABFFnAxAF'''xB