Metamath Proof Explorer


Theorem ffnafv

Description: A function maps to a class to which all values belong, analogous to ffnfv . (Contributed by Alexander van der Vekens, 25-May-2017)

Ref Expression
Assertion ffnafv F : A B F Fn A x A F ''' x B

Proof

Step Hyp Ref Expression
1 ffn F : A B F Fn A
2 fafvelrn F : A B x A F ''' x B
3 2 ralrimiva F : A B x A F ''' x B
4 1 3 jca F : A B F Fn A x A F ''' x B
5 simpl F Fn A x A F ''' x B F Fn A
6 afvelrnb0 F Fn A y ran F x A F ''' x = y
7 nfra1 x x A F ''' x B
8 nfv x y B
9 rsp x A F ''' x B x A F ''' x B
10 eleq1 F ''' x = y F ''' x B y B
11 10 biimpcd F ''' x B F ''' x = y y B
12 9 11 syl6 x A F ''' x B x A F ''' x = y y B
13 7 8 12 rexlimd x A F ''' x B x A F ''' x = y y B
14 6 13 sylan9 F Fn A x A F ''' x B y ran F y B
15 14 ssrdv F Fn A x A F ''' x B ran F B
16 df-f F : A B F Fn A ran F B
17 5 15 16 sylanbrc F Fn A x A F ''' x B F : A B
18 4 17 impbii F : A B F Fn A x A F ''' x B