Metamath Proof Explorer


Theorem afvres

Description: The value of a restricted function, analogous to fvres . (Contributed by Alexander van der Vekens, 22-Jul-2017)

Ref Expression
Assertion afvres A B F B ''' A = F ''' A

Proof

Step Hyp Ref Expression
1 elin A B dom F A B A dom F
2 1 biimpri A B A dom F A B dom F
3 dmres dom F B = B dom F
4 2 3 eleqtrrdi A B A dom F A dom F B
5 4 ex A B A dom F A dom F B
6 snssi A B A B
7 6 resabs1d A B F B A = F A
8 7 eqcomd A B F A = F B A
9 8 funeqd A B Fun F A Fun F B A
10 9 biimpd A B Fun F A Fun F B A
11 5 10 anim12d A B A dom F Fun F A A dom F B Fun F B A
12 11 impcom A dom F Fun F A A B A dom F B Fun F B A
13 df-dfat F B defAt A A dom F B Fun F B A
14 afvfundmfveq F B defAt A F B ''' A = F B A
15 13 14 sylbir A dom F B Fun F B A F B ''' A = F B A
16 12 15 syl A dom F Fun F A A B F B ''' A = F B A
17 fvres A B F B A = F A
18 17 adantl A dom F Fun F A A B F B A = F A
19 df-dfat F defAt A A dom F Fun F A
20 afvfundmfveq F defAt A F ''' A = F A
21 19 20 sylbir A dom F Fun F A F ''' A = F A
22 21 eqcomd A dom F Fun F A F A = F ''' A
23 22 adantr A dom F Fun F A A B F A = F ''' A
24 16 18 23 3eqtrd A dom F Fun F A A B F B ''' A = F ''' A
25 pm3.4 A B A dom F A B A dom F
26 1 25 sylbi A B dom F A B A dom F
27 26 3 eleq2s A dom F B A B A dom F
28 27 com12 A B A dom F B A dom F
29 7 funeqd A B Fun F B A Fun F A
30 29 biimpd A B Fun F B A Fun F A
31 28 30 anim12d A B A dom F B Fun F B A A dom F Fun F A
32 31 con3d A B ¬ A dom F Fun F A ¬ A dom F B Fun F B A
33 32 impcom ¬ A dom F Fun F A A B ¬ A dom F B Fun F B A
34 afvnfundmuv ¬ F B defAt A F B ''' A = V
35 13 34 sylnbir ¬ A dom F B Fun F B A F B ''' A = V
36 33 35 syl ¬ A dom F Fun F A A B F B ''' A = V
37 afvnfundmuv ¬ F defAt A F ''' A = V
38 19 37 sylnbir ¬ A dom F Fun F A F ''' A = V
39 38 eqcomd ¬ A dom F Fun F A V = F ''' A
40 39 adantr ¬ A dom F Fun F A A B V = F ''' A
41 36 40 eqtrd ¬ A dom F Fun F A A B F B ''' A = F ''' A
42 24 41 pm2.61ian A B F B ''' A = F ''' A