| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elin |  |-  ( A e. ( B i^i dom F ) <-> ( A e. B /\ A e. dom F ) ) | 
						
							| 2 | 1 | biimpri |  |-  ( ( A e. B /\ A e. dom F ) -> A e. ( B i^i dom F ) ) | 
						
							| 3 |  | dmres |  |-  dom ( F |` B ) = ( B i^i dom F ) | 
						
							| 4 | 2 3 | eleqtrrdi |  |-  ( ( A e. B /\ A e. dom F ) -> A e. dom ( F |` B ) ) | 
						
							| 5 | 4 | ex |  |-  ( A e. B -> ( A e. dom F -> A e. dom ( F |` B ) ) ) | 
						
							| 6 |  | snssi |  |-  ( A e. B -> { A } C_ B ) | 
						
							| 7 | 6 | resabs1d |  |-  ( A e. B -> ( ( F |` B ) |` { A } ) = ( F |` { A } ) ) | 
						
							| 8 | 7 | eqcomd |  |-  ( A e. B -> ( F |` { A } ) = ( ( F |` B ) |` { A } ) ) | 
						
							| 9 | 8 | funeqd |  |-  ( A e. B -> ( Fun ( F |` { A } ) <-> Fun ( ( F |` B ) |` { A } ) ) ) | 
						
							| 10 | 9 | biimpd |  |-  ( A e. B -> ( Fun ( F |` { A } ) -> Fun ( ( F |` B ) |` { A } ) ) ) | 
						
							| 11 | 5 10 | anim12d |  |-  ( A e. B -> ( ( A e. dom F /\ Fun ( F |` { A } ) ) -> ( A e. dom ( F |` B ) /\ Fun ( ( F |` B ) |` { A } ) ) ) ) | 
						
							| 12 | 11 | impcom |  |-  ( ( ( A e. dom F /\ Fun ( F |` { A } ) ) /\ A e. B ) -> ( A e. dom ( F |` B ) /\ Fun ( ( F |` B ) |` { A } ) ) ) | 
						
							| 13 |  | df-dfat |  |-  ( ( F |` B ) defAt A <-> ( A e. dom ( F |` B ) /\ Fun ( ( F |` B ) |` { A } ) ) ) | 
						
							| 14 |  | afvfundmfveq |  |-  ( ( F |` B ) defAt A -> ( ( F |` B ) ''' A ) = ( ( F |` B ) ` A ) ) | 
						
							| 15 | 13 14 | sylbir |  |-  ( ( A e. dom ( F |` B ) /\ Fun ( ( F |` B ) |` { A } ) ) -> ( ( F |` B ) ''' A ) = ( ( F |` B ) ` A ) ) | 
						
							| 16 | 12 15 | syl |  |-  ( ( ( A e. dom F /\ Fun ( F |` { A } ) ) /\ A e. B ) -> ( ( F |` B ) ''' A ) = ( ( F |` B ) ` A ) ) | 
						
							| 17 |  | fvres |  |-  ( A e. B -> ( ( F |` B ) ` A ) = ( F ` A ) ) | 
						
							| 18 | 17 | adantl |  |-  ( ( ( A e. dom F /\ Fun ( F |` { A } ) ) /\ A e. B ) -> ( ( F |` B ) ` A ) = ( F ` A ) ) | 
						
							| 19 |  | df-dfat |  |-  ( F defAt A <-> ( A e. dom F /\ Fun ( F |` { A } ) ) ) | 
						
							| 20 |  | afvfundmfveq |  |-  ( F defAt A -> ( F ''' A ) = ( F ` A ) ) | 
						
							| 21 | 19 20 | sylbir |  |-  ( ( A e. dom F /\ Fun ( F |` { A } ) ) -> ( F ''' A ) = ( F ` A ) ) | 
						
							| 22 | 21 | eqcomd |  |-  ( ( A e. dom F /\ Fun ( F |` { A } ) ) -> ( F ` A ) = ( F ''' A ) ) | 
						
							| 23 | 22 | adantr |  |-  ( ( ( A e. dom F /\ Fun ( F |` { A } ) ) /\ A e. B ) -> ( F ` A ) = ( F ''' A ) ) | 
						
							| 24 | 16 18 23 | 3eqtrd |  |-  ( ( ( A e. dom F /\ Fun ( F |` { A } ) ) /\ A e. B ) -> ( ( F |` B ) ''' A ) = ( F ''' A ) ) | 
						
							| 25 |  | pm3.4 |  |-  ( ( A e. B /\ A e. dom F ) -> ( A e. B -> A e. dom F ) ) | 
						
							| 26 | 1 25 | sylbi |  |-  ( A e. ( B i^i dom F ) -> ( A e. B -> A e. dom F ) ) | 
						
							| 27 | 26 3 | eleq2s |  |-  ( A e. dom ( F |` B ) -> ( A e. B -> A e. dom F ) ) | 
						
							| 28 | 27 | com12 |  |-  ( A e. B -> ( A e. dom ( F |` B ) -> A e. dom F ) ) | 
						
							| 29 | 7 | funeqd |  |-  ( A e. B -> ( Fun ( ( F |` B ) |` { A } ) <-> Fun ( F |` { A } ) ) ) | 
						
							| 30 | 29 | biimpd |  |-  ( A e. B -> ( Fun ( ( F |` B ) |` { A } ) -> Fun ( F |` { A } ) ) ) | 
						
							| 31 | 28 30 | anim12d |  |-  ( A e. B -> ( ( A e. dom ( F |` B ) /\ Fun ( ( F |` B ) |` { A } ) ) -> ( A e. dom F /\ Fun ( F |` { A } ) ) ) ) | 
						
							| 32 | 31 | con3d |  |-  ( A e. B -> ( -. ( A e. dom F /\ Fun ( F |` { A } ) ) -> -. ( A e. dom ( F |` B ) /\ Fun ( ( F |` B ) |` { A } ) ) ) ) | 
						
							| 33 | 32 | impcom |  |-  ( ( -. ( A e. dom F /\ Fun ( F |` { A } ) ) /\ A e. B ) -> -. ( A e. dom ( F |` B ) /\ Fun ( ( F |` B ) |` { A } ) ) ) | 
						
							| 34 |  | afvnfundmuv |  |-  ( -. ( F |` B ) defAt A -> ( ( F |` B ) ''' A ) = _V ) | 
						
							| 35 | 13 34 | sylnbir |  |-  ( -. ( A e. dom ( F |` B ) /\ Fun ( ( F |` B ) |` { A } ) ) -> ( ( F |` B ) ''' A ) = _V ) | 
						
							| 36 | 33 35 | syl |  |-  ( ( -. ( A e. dom F /\ Fun ( F |` { A } ) ) /\ A e. B ) -> ( ( F |` B ) ''' A ) = _V ) | 
						
							| 37 |  | afvnfundmuv |  |-  ( -. F defAt A -> ( F ''' A ) = _V ) | 
						
							| 38 | 19 37 | sylnbir |  |-  ( -. ( A e. dom F /\ Fun ( F |` { A } ) ) -> ( F ''' A ) = _V ) | 
						
							| 39 | 38 | eqcomd |  |-  ( -. ( A e. dom F /\ Fun ( F |` { A } ) ) -> _V = ( F ''' A ) ) | 
						
							| 40 | 39 | adantr |  |-  ( ( -. ( A e. dom F /\ Fun ( F |` { A } ) ) /\ A e. B ) -> _V = ( F ''' A ) ) | 
						
							| 41 | 36 40 | eqtrd |  |-  ( ( -. ( A e. dom F /\ Fun ( F |` { A } ) ) /\ A e. B ) -> ( ( F |` B ) ''' A ) = ( F ''' A ) ) | 
						
							| 42 | 24 41 | pm2.61ian |  |-  ( A e. B -> ( ( F |` B ) ''' A ) = ( F ''' A ) ) |