Step |
Hyp |
Ref |
Expression |
1 |
|
elin |
|- ( A e. ( B i^i dom F ) <-> ( A e. B /\ A e. dom F ) ) |
2 |
1
|
biimpri |
|- ( ( A e. B /\ A e. dom F ) -> A e. ( B i^i dom F ) ) |
3 |
|
dmres |
|- dom ( F |` B ) = ( B i^i dom F ) |
4 |
2 3
|
eleqtrrdi |
|- ( ( A e. B /\ A e. dom F ) -> A e. dom ( F |` B ) ) |
5 |
4
|
ex |
|- ( A e. B -> ( A e. dom F -> A e. dom ( F |` B ) ) ) |
6 |
|
snssi |
|- ( A e. B -> { A } C_ B ) |
7 |
6
|
resabs1d |
|- ( A e. B -> ( ( F |` B ) |` { A } ) = ( F |` { A } ) ) |
8 |
7
|
eqcomd |
|- ( A e. B -> ( F |` { A } ) = ( ( F |` B ) |` { A } ) ) |
9 |
8
|
funeqd |
|- ( A e. B -> ( Fun ( F |` { A } ) <-> Fun ( ( F |` B ) |` { A } ) ) ) |
10 |
9
|
biimpd |
|- ( A e. B -> ( Fun ( F |` { A } ) -> Fun ( ( F |` B ) |` { A } ) ) ) |
11 |
5 10
|
anim12d |
|- ( A e. B -> ( ( A e. dom F /\ Fun ( F |` { A } ) ) -> ( A e. dom ( F |` B ) /\ Fun ( ( F |` B ) |` { A } ) ) ) ) |
12 |
11
|
impcom |
|- ( ( ( A e. dom F /\ Fun ( F |` { A } ) ) /\ A e. B ) -> ( A e. dom ( F |` B ) /\ Fun ( ( F |` B ) |` { A } ) ) ) |
13 |
|
df-dfat |
|- ( ( F |` B ) defAt A <-> ( A e. dom ( F |` B ) /\ Fun ( ( F |` B ) |` { A } ) ) ) |
14 |
|
afvfundmfveq |
|- ( ( F |` B ) defAt A -> ( ( F |` B ) ''' A ) = ( ( F |` B ) ` A ) ) |
15 |
13 14
|
sylbir |
|- ( ( A e. dom ( F |` B ) /\ Fun ( ( F |` B ) |` { A } ) ) -> ( ( F |` B ) ''' A ) = ( ( F |` B ) ` A ) ) |
16 |
12 15
|
syl |
|- ( ( ( A e. dom F /\ Fun ( F |` { A } ) ) /\ A e. B ) -> ( ( F |` B ) ''' A ) = ( ( F |` B ) ` A ) ) |
17 |
|
fvres |
|- ( A e. B -> ( ( F |` B ) ` A ) = ( F ` A ) ) |
18 |
17
|
adantl |
|- ( ( ( A e. dom F /\ Fun ( F |` { A } ) ) /\ A e. B ) -> ( ( F |` B ) ` A ) = ( F ` A ) ) |
19 |
|
df-dfat |
|- ( F defAt A <-> ( A e. dom F /\ Fun ( F |` { A } ) ) ) |
20 |
|
afvfundmfveq |
|- ( F defAt A -> ( F ''' A ) = ( F ` A ) ) |
21 |
19 20
|
sylbir |
|- ( ( A e. dom F /\ Fun ( F |` { A } ) ) -> ( F ''' A ) = ( F ` A ) ) |
22 |
21
|
eqcomd |
|- ( ( A e. dom F /\ Fun ( F |` { A } ) ) -> ( F ` A ) = ( F ''' A ) ) |
23 |
22
|
adantr |
|- ( ( ( A e. dom F /\ Fun ( F |` { A } ) ) /\ A e. B ) -> ( F ` A ) = ( F ''' A ) ) |
24 |
16 18 23
|
3eqtrd |
|- ( ( ( A e. dom F /\ Fun ( F |` { A } ) ) /\ A e. B ) -> ( ( F |` B ) ''' A ) = ( F ''' A ) ) |
25 |
|
pm3.4 |
|- ( ( A e. B /\ A e. dom F ) -> ( A e. B -> A e. dom F ) ) |
26 |
1 25
|
sylbi |
|- ( A e. ( B i^i dom F ) -> ( A e. B -> A e. dom F ) ) |
27 |
26 3
|
eleq2s |
|- ( A e. dom ( F |` B ) -> ( A e. B -> A e. dom F ) ) |
28 |
27
|
com12 |
|- ( A e. B -> ( A e. dom ( F |` B ) -> A e. dom F ) ) |
29 |
7
|
funeqd |
|- ( A e. B -> ( Fun ( ( F |` B ) |` { A } ) <-> Fun ( F |` { A } ) ) ) |
30 |
29
|
biimpd |
|- ( A e. B -> ( Fun ( ( F |` B ) |` { A } ) -> Fun ( F |` { A } ) ) ) |
31 |
28 30
|
anim12d |
|- ( A e. B -> ( ( A e. dom ( F |` B ) /\ Fun ( ( F |` B ) |` { A } ) ) -> ( A e. dom F /\ Fun ( F |` { A } ) ) ) ) |
32 |
31
|
con3d |
|- ( A e. B -> ( -. ( A e. dom F /\ Fun ( F |` { A } ) ) -> -. ( A e. dom ( F |` B ) /\ Fun ( ( F |` B ) |` { A } ) ) ) ) |
33 |
32
|
impcom |
|- ( ( -. ( A e. dom F /\ Fun ( F |` { A } ) ) /\ A e. B ) -> -. ( A e. dom ( F |` B ) /\ Fun ( ( F |` B ) |` { A } ) ) ) |
34 |
|
afvnfundmuv |
|- ( -. ( F |` B ) defAt A -> ( ( F |` B ) ''' A ) = _V ) |
35 |
13 34
|
sylnbir |
|- ( -. ( A e. dom ( F |` B ) /\ Fun ( ( F |` B ) |` { A } ) ) -> ( ( F |` B ) ''' A ) = _V ) |
36 |
33 35
|
syl |
|- ( ( -. ( A e. dom F /\ Fun ( F |` { A } ) ) /\ A e. B ) -> ( ( F |` B ) ''' A ) = _V ) |
37 |
|
afvnfundmuv |
|- ( -. F defAt A -> ( F ''' A ) = _V ) |
38 |
19 37
|
sylnbir |
|- ( -. ( A e. dom F /\ Fun ( F |` { A } ) ) -> ( F ''' A ) = _V ) |
39 |
38
|
eqcomd |
|- ( -. ( A e. dom F /\ Fun ( F |` { A } ) ) -> _V = ( F ''' A ) ) |
40 |
39
|
adantr |
|- ( ( -. ( A e. dom F /\ Fun ( F |` { A } ) ) /\ A e. B ) -> _V = ( F ''' A ) ) |
41 |
36 40
|
eqtrd |
|- ( ( -. ( A e. dom F /\ Fun ( F |` { A } ) ) /\ A e. B ) -> ( ( F |` B ) ''' A ) = ( F ''' A ) ) |
42 |
24 41
|
pm2.61ian |
|- ( A e. B -> ( ( F |` B ) ''' A ) = ( F ''' A ) ) |