| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elin | ⊢ ( 𝐴  ∈  ( 𝐵  ∩  dom  𝐹 )  ↔  ( 𝐴  ∈  𝐵  ∧  𝐴  ∈  dom  𝐹 ) ) | 
						
							| 2 | 1 | biimpri | ⊢ ( ( 𝐴  ∈  𝐵  ∧  𝐴  ∈  dom  𝐹 )  →  𝐴  ∈  ( 𝐵  ∩  dom  𝐹 ) ) | 
						
							| 3 |  | dmres | ⊢ dom  ( 𝐹  ↾  𝐵 )  =  ( 𝐵  ∩  dom  𝐹 ) | 
						
							| 4 | 2 3 | eleqtrrdi | ⊢ ( ( 𝐴  ∈  𝐵  ∧  𝐴  ∈  dom  𝐹 )  →  𝐴  ∈  dom  ( 𝐹  ↾  𝐵 ) ) | 
						
							| 5 | 4 | ex | ⊢ ( 𝐴  ∈  𝐵  →  ( 𝐴  ∈  dom  𝐹  →  𝐴  ∈  dom  ( 𝐹  ↾  𝐵 ) ) ) | 
						
							| 6 |  | snssi | ⊢ ( 𝐴  ∈  𝐵  →  { 𝐴 }  ⊆  𝐵 ) | 
						
							| 7 | 6 | resabs1d | ⊢ ( 𝐴  ∈  𝐵  →  ( ( 𝐹  ↾  𝐵 )  ↾  { 𝐴 } )  =  ( 𝐹  ↾  { 𝐴 } ) ) | 
						
							| 8 | 7 | eqcomd | ⊢ ( 𝐴  ∈  𝐵  →  ( 𝐹  ↾  { 𝐴 } )  =  ( ( 𝐹  ↾  𝐵 )  ↾  { 𝐴 } ) ) | 
						
							| 9 | 8 | funeqd | ⊢ ( 𝐴  ∈  𝐵  →  ( Fun  ( 𝐹  ↾  { 𝐴 } )  ↔  Fun  ( ( 𝐹  ↾  𝐵 )  ↾  { 𝐴 } ) ) ) | 
						
							| 10 | 9 | biimpd | ⊢ ( 𝐴  ∈  𝐵  →  ( Fun  ( 𝐹  ↾  { 𝐴 } )  →  Fun  ( ( 𝐹  ↾  𝐵 )  ↾  { 𝐴 } ) ) ) | 
						
							| 11 | 5 10 | anim12d | ⊢ ( 𝐴  ∈  𝐵  →  ( ( 𝐴  ∈  dom  𝐹  ∧  Fun  ( 𝐹  ↾  { 𝐴 } ) )  →  ( 𝐴  ∈  dom  ( 𝐹  ↾  𝐵 )  ∧  Fun  ( ( 𝐹  ↾  𝐵 )  ↾  { 𝐴 } ) ) ) ) | 
						
							| 12 | 11 | impcom | ⊢ ( ( ( 𝐴  ∈  dom  𝐹  ∧  Fun  ( 𝐹  ↾  { 𝐴 } ) )  ∧  𝐴  ∈  𝐵 )  →  ( 𝐴  ∈  dom  ( 𝐹  ↾  𝐵 )  ∧  Fun  ( ( 𝐹  ↾  𝐵 )  ↾  { 𝐴 } ) ) ) | 
						
							| 13 |  | df-dfat | ⊢ ( ( 𝐹  ↾  𝐵 )  defAt  𝐴  ↔  ( 𝐴  ∈  dom  ( 𝐹  ↾  𝐵 )  ∧  Fun  ( ( 𝐹  ↾  𝐵 )  ↾  { 𝐴 } ) ) ) | 
						
							| 14 |  | afvfundmfveq | ⊢ ( ( 𝐹  ↾  𝐵 )  defAt  𝐴  →  ( ( 𝐹  ↾  𝐵 ) ''' 𝐴 )  =  ( ( 𝐹  ↾  𝐵 ) ‘ 𝐴 ) ) | 
						
							| 15 | 13 14 | sylbir | ⊢ ( ( 𝐴  ∈  dom  ( 𝐹  ↾  𝐵 )  ∧  Fun  ( ( 𝐹  ↾  𝐵 )  ↾  { 𝐴 } ) )  →  ( ( 𝐹  ↾  𝐵 ) ''' 𝐴 )  =  ( ( 𝐹  ↾  𝐵 ) ‘ 𝐴 ) ) | 
						
							| 16 | 12 15 | syl | ⊢ ( ( ( 𝐴  ∈  dom  𝐹  ∧  Fun  ( 𝐹  ↾  { 𝐴 } ) )  ∧  𝐴  ∈  𝐵 )  →  ( ( 𝐹  ↾  𝐵 ) ''' 𝐴 )  =  ( ( 𝐹  ↾  𝐵 ) ‘ 𝐴 ) ) | 
						
							| 17 |  | fvres | ⊢ ( 𝐴  ∈  𝐵  →  ( ( 𝐹  ↾  𝐵 ) ‘ 𝐴 )  =  ( 𝐹 ‘ 𝐴 ) ) | 
						
							| 18 | 17 | adantl | ⊢ ( ( ( 𝐴  ∈  dom  𝐹  ∧  Fun  ( 𝐹  ↾  { 𝐴 } ) )  ∧  𝐴  ∈  𝐵 )  →  ( ( 𝐹  ↾  𝐵 ) ‘ 𝐴 )  =  ( 𝐹 ‘ 𝐴 ) ) | 
						
							| 19 |  | df-dfat | ⊢ ( 𝐹  defAt  𝐴  ↔  ( 𝐴  ∈  dom  𝐹  ∧  Fun  ( 𝐹  ↾  { 𝐴 } ) ) ) | 
						
							| 20 |  | afvfundmfveq | ⊢ ( 𝐹  defAt  𝐴  →  ( 𝐹 ''' 𝐴 )  =  ( 𝐹 ‘ 𝐴 ) ) | 
						
							| 21 | 19 20 | sylbir | ⊢ ( ( 𝐴  ∈  dom  𝐹  ∧  Fun  ( 𝐹  ↾  { 𝐴 } ) )  →  ( 𝐹 ''' 𝐴 )  =  ( 𝐹 ‘ 𝐴 ) ) | 
						
							| 22 | 21 | eqcomd | ⊢ ( ( 𝐴  ∈  dom  𝐹  ∧  Fun  ( 𝐹  ↾  { 𝐴 } ) )  →  ( 𝐹 ‘ 𝐴 )  =  ( 𝐹 ''' 𝐴 ) ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( ( 𝐴  ∈  dom  𝐹  ∧  Fun  ( 𝐹  ↾  { 𝐴 } ) )  ∧  𝐴  ∈  𝐵 )  →  ( 𝐹 ‘ 𝐴 )  =  ( 𝐹 ''' 𝐴 ) ) | 
						
							| 24 | 16 18 23 | 3eqtrd | ⊢ ( ( ( 𝐴  ∈  dom  𝐹  ∧  Fun  ( 𝐹  ↾  { 𝐴 } ) )  ∧  𝐴  ∈  𝐵 )  →  ( ( 𝐹  ↾  𝐵 ) ''' 𝐴 )  =  ( 𝐹 ''' 𝐴 ) ) | 
						
							| 25 |  | pm3.4 | ⊢ ( ( 𝐴  ∈  𝐵  ∧  𝐴  ∈  dom  𝐹 )  →  ( 𝐴  ∈  𝐵  →  𝐴  ∈  dom  𝐹 ) ) | 
						
							| 26 | 1 25 | sylbi | ⊢ ( 𝐴  ∈  ( 𝐵  ∩  dom  𝐹 )  →  ( 𝐴  ∈  𝐵  →  𝐴  ∈  dom  𝐹 ) ) | 
						
							| 27 | 26 3 | eleq2s | ⊢ ( 𝐴  ∈  dom  ( 𝐹  ↾  𝐵 )  →  ( 𝐴  ∈  𝐵  →  𝐴  ∈  dom  𝐹 ) ) | 
						
							| 28 | 27 | com12 | ⊢ ( 𝐴  ∈  𝐵  →  ( 𝐴  ∈  dom  ( 𝐹  ↾  𝐵 )  →  𝐴  ∈  dom  𝐹 ) ) | 
						
							| 29 | 7 | funeqd | ⊢ ( 𝐴  ∈  𝐵  →  ( Fun  ( ( 𝐹  ↾  𝐵 )  ↾  { 𝐴 } )  ↔  Fun  ( 𝐹  ↾  { 𝐴 } ) ) ) | 
						
							| 30 | 29 | biimpd | ⊢ ( 𝐴  ∈  𝐵  →  ( Fun  ( ( 𝐹  ↾  𝐵 )  ↾  { 𝐴 } )  →  Fun  ( 𝐹  ↾  { 𝐴 } ) ) ) | 
						
							| 31 | 28 30 | anim12d | ⊢ ( 𝐴  ∈  𝐵  →  ( ( 𝐴  ∈  dom  ( 𝐹  ↾  𝐵 )  ∧  Fun  ( ( 𝐹  ↾  𝐵 )  ↾  { 𝐴 } ) )  →  ( 𝐴  ∈  dom  𝐹  ∧  Fun  ( 𝐹  ↾  { 𝐴 } ) ) ) ) | 
						
							| 32 | 31 | con3d | ⊢ ( 𝐴  ∈  𝐵  →  ( ¬  ( 𝐴  ∈  dom  𝐹  ∧  Fun  ( 𝐹  ↾  { 𝐴 } ) )  →  ¬  ( 𝐴  ∈  dom  ( 𝐹  ↾  𝐵 )  ∧  Fun  ( ( 𝐹  ↾  𝐵 )  ↾  { 𝐴 } ) ) ) ) | 
						
							| 33 | 32 | impcom | ⊢ ( ( ¬  ( 𝐴  ∈  dom  𝐹  ∧  Fun  ( 𝐹  ↾  { 𝐴 } ) )  ∧  𝐴  ∈  𝐵 )  →  ¬  ( 𝐴  ∈  dom  ( 𝐹  ↾  𝐵 )  ∧  Fun  ( ( 𝐹  ↾  𝐵 )  ↾  { 𝐴 } ) ) ) | 
						
							| 34 |  | afvnfundmuv | ⊢ ( ¬  ( 𝐹  ↾  𝐵 )  defAt  𝐴  →  ( ( 𝐹  ↾  𝐵 ) ''' 𝐴 )  =  V ) | 
						
							| 35 | 13 34 | sylnbir | ⊢ ( ¬  ( 𝐴  ∈  dom  ( 𝐹  ↾  𝐵 )  ∧  Fun  ( ( 𝐹  ↾  𝐵 )  ↾  { 𝐴 } ) )  →  ( ( 𝐹  ↾  𝐵 ) ''' 𝐴 )  =  V ) | 
						
							| 36 | 33 35 | syl | ⊢ ( ( ¬  ( 𝐴  ∈  dom  𝐹  ∧  Fun  ( 𝐹  ↾  { 𝐴 } ) )  ∧  𝐴  ∈  𝐵 )  →  ( ( 𝐹  ↾  𝐵 ) ''' 𝐴 )  =  V ) | 
						
							| 37 |  | afvnfundmuv | ⊢ ( ¬  𝐹  defAt  𝐴  →  ( 𝐹 ''' 𝐴 )  =  V ) | 
						
							| 38 | 19 37 | sylnbir | ⊢ ( ¬  ( 𝐴  ∈  dom  𝐹  ∧  Fun  ( 𝐹  ↾  { 𝐴 } ) )  →  ( 𝐹 ''' 𝐴 )  =  V ) | 
						
							| 39 | 38 | eqcomd | ⊢ ( ¬  ( 𝐴  ∈  dom  𝐹  ∧  Fun  ( 𝐹  ↾  { 𝐴 } ) )  →  V  =  ( 𝐹 ''' 𝐴 ) ) | 
						
							| 40 | 39 | adantr | ⊢ ( ( ¬  ( 𝐴  ∈  dom  𝐹  ∧  Fun  ( 𝐹  ↾  { 𝐴 } ) )  ∧  𝐴  ∈  𝐵 )  →  V  =  ( 𝐹 ''' 𝐴 ) ) | 
						
							| 41 | 36 40 | eqtrd | ⊢ ( ( ¬  ( 𝐴  ∈  dom  𝐹  ∧  Fun  ( 𝐹  ↾  { 𝐴 } ) )  ∧  𝐴  ∈  𝐵 )  →  ( ( 𝐹  ↾  𝐵 ) ''' 𝐴 )  =  ( 𝐹 ''' 𝐴 ) ) | 
						
							| 42 | 24 41 | pm2.61ian | ⊢ ( 𝐴  ∈  𝐵  →  ( ( 𝐹  ↾  𝐵 ) ''' 𝐴 )  =  ( 𝐹 ''' 𝐴 ) ) |