| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ffn | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  𝐹  Fn  𝐴 ) | 
						
							| 2 |  | fafvelcdm | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑥  ∈  𝐴 )  →  ( 𝐹 ''' 𝑥 )  ∈  𝐵 ) | 
						
							| 3 | 2 | ralrimiva | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  ∀ 𝑥  ∈  𝐴 ( 𝐹 ''' 𝑥 )  ∈  𝐵 ) | 
						
							| 4 | 1 3 | jca | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  ( 𝐹  Fn  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ( 𝐹 ''' 𝑥 )  ∈  𝐵 ) ) | 
						
							| 5 |  | simpl | ⊢ ( ( 𝐹  Fn  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ( 𝐹 ''' 𝑥 )  ∈  𝐵 )  →  𝐹  Fn  𝐴 ) | 
						
							| 6 |  | afvelrnb0 | ⊢ ( 𝐹  Fn  𝐴  →  ( 𝑦  ∈  ran  𝐹  →  ∃ 𝑥  ∈  𝐴 ( 𝐹 ''' 𝑥 )  =  𝑦 ) ) | 
						
							| 7 |  | nfra1 | ⊢ Ⅎ 𝑥 ∀ 𝑥  ∈  𝐴 ( 𝐹 ''' 𝑥 )  ∈  𝐵 | 
						
							| 8 |  | nfv | ⊢ Ⅎ 𝑥 𝑦  ∈  𝐵 | 
						
							| 9 |  | rsp | ⊢ ( ∀ 𝑥  ∈  𝐴 ( 𝐹 ''' 𝑥 )  ∈  𝐵  →  ( 𝑥  ∈  𝐴  →  ( 𝐹 ''' 𝑥 )  ∈  𝐵 ) ) | 
						
							| 10 |  | eleq1 | ⊢ ( ( 𝐹 ''' 𝑥 )  =  𝑦  →  ( ( 𝐹 ''' 𝑥 )  ∈  𝐵  ↔  𝑦  ∈  𝐵 ) ) | 
						
							| 11 | 10 | biimpcd | ⊢ ( ( 𝐹 ''' 𝑥 )  ∈  𝐵  →  ( ( 𝐹 ''' 𝑥 )  =  𝑦  →  𝑦  ∈  𝐵 ) ) | 
						
							| 12 | 9 11 | syl6 | ⊢ ( ∀ 𝑥  ∈  𝐴 ( 𝐹 ''' 𝑥 )  ∈  𝐵  →  ( 𝑥  ∈  𝐴  →  ( ( 𝐹 ''' 𝑥 )  =  𝑦  →  𝑦  ∈  𝐵 ) ) ) | 
						
							| 13 | 7 8 12 | rexlimd | ⊢ ( ∀ 𝑥  ∈  𝐴 ( 𝐹 ''' 𝑥 )  ∈  𝐵  →  ( ∃ 𝑥  ∈  𝐴 ( 𝐹 ''' 𝑥 )  =  𝑦  →  𝑦  ∈  𝐵 ) ) | 
						
							| 14 | 6 13 | sylan9 | ⊢ ( ( 𝐹  Fn  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ( 𝐹 ''' 𝑥 )  ∈  𝐵 )  →  ( 𝑦  ∈  ran  𝐹  →  𝑦  ∈  𝐵 ) ) | 
						
							| 15 | 14 | ssrdv | ⊢ ( ( 𝐹  Fn  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ( 𝐹 ''' 𝑥 )  ∈  𝐵 )  →  ran  𝐹  ⊆  𝐵 ) | 
						
							| 16 |  | df-f | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  ↔  ( 𝐹  Fn  𝐴  ∧  ran  𝐹  ⊆  𝐵 ) ) | 
						
							| 17 | 5 15 16 | sylanbrc | ⊢ ( ( 𝐹  Fn  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ( 𝐹 ''' 𝑥 )  ∈  𝐵 )  →  𝐹 : 𝐴 ⟶ 𝐵 ) | 
						
							| 18 | 4 17 | impbii | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  ↔  ( 𝐹  Fn  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ( 𝐹 ''' 𝑥 )  ∈  𝐵 ) ) |