| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ffn |  |-  ( F : A --> B -> F Fn A ) | 
						
							| 2 |  | fafvelcdm |  |-  ( ( F : A --> B /\ x e. A ) -> ( F ''' x ) e. B ) | 
						
							| 3 | 2 | ralrimiva |  |-  ( F : A --> B -> A. x e. A ( F ''' x ) e. B ) | 
						
							| 4 | 1 3 | jca |  |-  ( F : A --> B -> ( F Fn A /\ A. x e. A ( F ''' x ) e. B ) ) | 
						
							| 5 |  | simpl |  |-  ( ( F Fn A /\ A. x e. A ( F ''' x ) e. B ) -> F Fn A ) | 
						
							| 6 |  | afvelrnb0 |  |-  ( F Fn A -> ( y e. ran F -> E. x e. A ( F ''' x ) = y ) ) | 
						
							| 7 |  | nfra1 |  |-  F/ x A. x e. A ( F ''' x ) e. B | 
						
							| 8 |  | nfv |  |-  F/ x y e. B | 
						
							| 9 |  | rsp |  |-  ( A. x e. A ( F ''' x ) e. B -> ( x e. A -> ( F ''' x ) e. B ) ) | 
						
							| 10 |  | eleq1 |  |-  ( ( F ''' x ) = y -> ( ( F ''' x ) e. B <-> y e. B ) ) | 
						
							| 11 | 10 | biimpcd |  |-  ( ( F ''' x ) e. B -> ( ( F ''' x ) = y -> y e. B ) ) | 
						
							| 12 | 9 11 | syl6 |  |-  ( A. x e. A ( F ''' x ) e. B -> ( x e. A -> ( ( F ''' x ) = y -> y e. B ) ) ) | 
						
							| 13 | 7 8 12 | rexlimd |  |-  ( A. x e. A ( F ''' x ) e. B -> ( E. x e. A ( F ''' x ) = y -> y e. B ) ) | 
						
							| 14 | 6 13 | sylan9 |  |-  ( ( F Fn A /\ A. x e. A ( F ''' x ) e. B ) -> ( y e. ran F -> y e. B ) ) | 
						
							| 15 | 14 | ssrdv |  |-  ( ( F Fn A /\ A. x e. A ( F ''' x ) e. B ) -> ran F C_ B ) | 
						
							| 16 |  | df-f |  |-  ( F : A --> B <-> ( F Fn A /\ ran F C_ B ) ) | 
						
							| 17 | 5 15 16 | sylanbrc |  |-  ( ( F Fn A /\ A. x e. A ( F ''' x ) e. B ) -> F : A --> B ) | 
						
							| 18 | 4 17 | impbii |  |-  ( F : A --> B <-> ( F Fn A /\ A. x e. A ( F ''' x ) e. B ) ) |