Metamath Proof Explorer


Theorem fimacnvdisj

Description: The preimage of a class disjoint with a mapping's codomain is empty. (Contributed by FL, 24-Jan-2007)

Ref Expression
Assertion fimacnvdisj F:ABBC=F-1C=

Proof

Step Hyp Ref Expression
1 df-rn ranF=domF-1
2 frn F:ABranFB
3 2 adantr F:ABBC=ranFB
4 1 3 eqsstrrid F:ABBC=domF-1B
5 ssdisj domF-1BBC=domF-1C=
6 4 5 sylancom F:ABBC=domF-1C=
7 imadisj F-1C=domF-1C=
8 6 7 sylibr F:ABBC=F-1C=