Metamath Proof Explorer


Theorem fimacnvinrn

Description: Taking the converse image of a set can be limited to the range of the function used. (Contributed by Thierry Arnoux, 21-Jan-2017)

Ref Expression
Assertion fimacnvinrn FunFF-1A=F-1AranF

Proof

Step Hyp Ref Expression
1 inpreima FunFF-1AranF=F-1AF-1ranF
2 funforn FunFF:domFontoranF
3 fof F:domFontoranFF:domFranF
4 2 3 sylbi FunFF:domFranF
5 fimacnv F:domFranFF-1ranF=domF
6 4 5 syl FunFF-1ranF=domF
7 6 ineq2d FunFF-1AF-1ranF=F-1AdomF
8 cnvresima FdomF-1A=F-1AdomF
9 resdm2 FdomF=F-1-1
10 funrel FunFRelF
11 dfrel2 RelFF-1-1=F
12 10 11 sylib FunFF-1-1=F
13 9 12 eqtrid FunFFdomF=F
14 13 cnveqd FunFFdomF-1=F-1
15 14 imaeq1d FunFFdomF-1A=F-1A
16 8 15 eqtr3id FunFF-1AdomF=F-1A
17 1 7 16 3eqtrrd FunFF-1A=F-1AranF