Metamath Proof Explorer


Theorem fimaxg

Description: A finite set has a maximum under a total order. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 29-Jan-2014)

Ref Expression
Assertion fimaxg ROrAAFinAxAyAxyyRx

Proof

Step Hyp Ref Expression
1 fimax2g ROrAAFinAxAyA¬xRy
2 df-ne xy¬x=y
3 2 imbi1i xyyRx¬x=yyRx
4 pm4.64 ¬x=yyRxx=yyRx
5 3 4 bitri xyyRxx=yyRx
6 sotric ROrAxAyAxRy¬x=yyRx
7 6 con2bid ROrAxAyAx=yyRx¬xRy
8 5 7 bitrid ROrAxAyAxyyRx¬xRy
9 8 anassrs ROrAxAyAxyyRx¬xRy
10 9 ralbidva ROrAxAyAxyyRxyA¬xRy
11 10 rexbidva ROrAxAyAxyyRxxAyA¬xRy
12 11 3ad2ant1 ROrAAFinAxAyAxyyRxxAyA¬xRy
13 1 12 mpbird ROrAAFinAxAyAxyyRx