Metamath Proof Explorer


Theorem fin23lem29

Description: Lemma for fin23 . The residual is built from the same elements as the previous sequence. (Contributed by Stefan O'Rear, 2-Nov-2014)

Ref Expression
Hypotheses fin23lem.a U=seqωiω,uViftiu=utiurant
fin23lem17.f F=g|a𝒫gωxωasucxaxranarana
fin23lem.b P=vω|ranUtv
fin23lem.c Q=wωιxP|xPw
fin23lem.d R=wωιxωP|xωPw
fin23lem.e Z=ifPFintRzPtzranUQ
Assertion fin23lem29 ranZrant

Proof

Step Hyp Ref Expression
1 fin23lem.a U=seqωiω,uViftiu=utiurant
2 fin23lem17.f F=g|a𝒫gωxωasucxaxranarana
3 fin23lem.b P=vω|ranUtv
4 fin23lem.c Q=wωιxP|xPw
5 fin23lem.d R=wωιxωP|xωPw
6 fin23lem.e Z=ifPFintRzPtzranUQ
7 eqif Z=ifPFintRzPtzranUQPFinZ=tR¬PFinZ=zPtzranUQ
8 7 biimpi Z=ifPFintRzPtzranUQPFinZ=tR¬PFinZ=zPtzranUQ
9 rneq Z=tRranZ=rantR
10 9 unieqd Z=tRranZ=rantR
11 rncoss rantRrant
12 11 unissi rantRrant
13 10 12 eqsstrdi Z=tRranZrant
14 13 adantl PFinZ=tRranZrant
15 rneq Z=zPtzranUQranZ=ranzPtzranUQ
16 15 unieqd Z=zPtzranUQranZ=ranzPtzranUQ
17 rncoss ranzPtzranUQranzPtzranU
18 17 unissi ranzPtzranUQranzPtzranU
19 unissb ranzPtzranUrantaranzPtzranUarant
20 abid aa|zPa=tzranUzPa=tzranU
21 fvssunirn tzrant
22 21 a1i zPtzrant
23 22 ssdifssd zPtzranUrant
24 sseq1 a=tzranUaranttzranUrant
25 23 24 syl5ibrcom zPa=tzranUarant
26 25 rexlimiv zPa=tzranUarant
27 20 26 sylbi aa|zPa=tzranUarant
28 eqid zPtzranU=zPtzranU
29 28 rnmpt ranzPtzranU=a|zPa=tzranU
30 27 29 eleq2s aranzPtzranUarant
31 19 30 mprgbir ranzPtzranUrant
32 18 31 sstri ranzPtzranUQrant
33 16 32 eqsstrdi Z=zPtzranUQranZrant
34 33 adantl ¬PFinZ=zPtzranUQranZrant
35 14 34 jaoi PFinZ=tR¬PFinZ=zPtzranUQranZrant
36 6 8 35 mp2b ranZrant