Metamath Proof Explorer


Theorem fin23lem36

Description: Lemma for fin23 . Weak order property of Y . (Contributed by Stefan O'Rear, 2-Nov-2014)

Ref Expression
Hypotheses fin23lem33.f F = g | a 𝒫 g ω x ω a suc x a x ran a ran a
fin23lem.f φ h : ω 1-1 V
fin23lem.g φ ran h G
fin23lem.h φ j j : ω 1-1 V ran j G i j : ω 1-1 V ran i j ran j
fin23lem.i Y = rec i h ω
Assertion fin23lem36 A ω B ω B A φ ran Y A ran Y B

Proof

Step Hyp Ref Expression
1 fin23lem33.f F = g | a 𝒫 g ω x ω a suc x a x ran a ran a
2 fin23lem.f φ h : ω 1-1 V
3 fin23lem.g φ ran h G
4 fin23lem.h φ j j : ω 1-1 V ran j G i j : ω 1-1 V ran i j ran j
5 fin23lem.i Y = rec i h ω
6 fveq2 a = B Y a = Y B
7 6 rneqd a = B ran Y a = ran Y B
8 7 unieqd a = B ran Y a = ran Y B
9 8 sseq1d a = B ran Y a ran Y B ran Y B ran Y B
10 9 imbi2d a = B φ ran Y a ran Y B φ ran Y B ran Y B
11 fveq2 a = b Y a = Y b
12 11 rneqd a = b ran Y a = ran Y b
13 12 unieqd a = b ran Y a = ran Y b
14 13 sseq1d a = b ran Y a ran Y B ran Y b ran Y B
15 14 imbi2d a = b φ ran Y a ran Y B φ ran Y b ran Y B
16 fveq2 a = suc b Y a = Y suc b
17 16 rneqd a = suc b ran Y a = ran Y suc b
18 17 unieqd a = suc b ran Y a = ran Y suc b
19 18 sseq1d a = suc b ran Y a ran Y B ran Y suc b ran Y B
20 19 imbi2d a = suc b φ ran Y a ran Y B φ ran Y suc b ran Y B
21 fveq2 a = A Y a = Y A
22 21 rneqd a = A ran Y a = ran Y A
23 22 unieqd a = A ran Y a = ran Y A
24 23 sseq1d a = A ran Y a ran Y B ran Y A ran Y B
25 24 imbi2d a = A φ ran Y a ran Y B φ ran Y A ran Y B
26 ssid ran Y B ran Y B
27 26 2a1i B ω φ ran Y B ran Y B
28 simprr b ω B ω B b φ φ
29 simpll b ω B ω B b φ b ω
30 1 2 3 4 5 fin23lem35 φ b ω ran Y suc b ran Y b
31 28 29 30 syl2anc b ω B ω B b φ ran Y suc b ran Y b
32 31 pssssd b ω B ω B b φ ran Y suc b ran Y b
33 sstr2 ran Y suc b ran Y b ran Y b ran Y B ran Y suc b ran Y B
34 32 33 syl b ω B ω B b φ ran Y b ran Y B ran Y suc b ran Y B
35 34 expr b ω B ω B b φ ran Y b ran Y B ran Y suc b ran Y B
36 35 a2d b ω B ω B b φ ran Y b ran Y B φ ran Y suc b ran Y B
37 10 15 20 25 27 36 findsg A ω B ω B A φ ran Y A ran Y B
38 37 impr A ω B ω B A φ ran Y A ran Y B