Metamath Proof Explorer


Theorem fin23lem35

Description: Lemma for fin23 . Strict order property of Y . (Contributed by Stefan O'Rear, 2-Nov-2014)

Ref Expression
Hypotheses fin23lem33.f F=g|a𝒫gωxωasucxaxranarana
fin23lem.f φh:ω1-1V
fin23lem.g φranhG
fin23lem.h φjj:ω1-1VranjGij:ω1-1Vranijranj
fin23lem.i Y=recihω
Assertion fin23lem35 φAωranYsucAranYA

Proof

Step Hyp Ref Expression
1 fin23lem33.f F=g|a𝒫gωxωasucxaxranarana
2 fin23lem.f φh:ω1-1V
3 fin23lem.g φranhG
4 fin23lem.h φjj:ω1-1VranjGij:ω1-1Vranijranj
5 fin23lem.i Y=recihω
6 1 2 3 4 5 fin23lem34 φAωYA:ω1-1VranYAG
7 fvex YAV
8 f1eq1 j=YAj:ω1-1VYA:ω1-1V
9 rneq j=YAranj=ranYA
10 9 unieqd j=YAranj=ranYA
11 10 sseq1d j=YAranjGranYAG
12 8 11 anbi12d j=YAj:ω1-1VranjGYA:ω1-1VranYAG
13 fveq2 j=YAij=iYA
14 f1eq1 ij=iYAij:ω1-1ViYA:ω1-1V
15 13 14 syl j=YAij:ω1-1ViYA:ω1-1V
16 13 rneqd j=YAranij=raniYA
17 16 unieqd j=YAranij=raniYA
18 17 10 psseq12d j=YAranijranjraniYAranYA
19 15 18 anbi12d j=YAij:ω1-1VranijranjiYA:ω1-1VraniYAranYA
20 12 19 imbi12d j=YAj:ω1-1VranjGij:ω1-1VranijranjYA:ω1-1VranYAGiYA:ω1-1VraniYAranYA
21 7 20 spcv jj:ω1-1VranjGij:ω1-1VranijranjYA:ω1-1VranYAGiYA:ω1-1VraniYAranYA
22 4 21 syl φYA:ω1-1VranYAGiYA:ω1-1VraniYAranYA
23 22 adantr φAωYA:ω1-1VranYAGiYA:ω1-1VraniYAranYA
24 6 23 mpd φAωiYA:ω1-1VraniYAranYA
25 24 simprd φAωraniYAranYA
26 frsuc AωrecihωsucA=irecihωA
27 26 adantl φAωrecihωsucA=irecihωA
28 5 fveq1i YsucA=recihωsucA
29 5 fveq1i YA=recihωA
30 29 fveq2i iYA=irecihωA
31 27 28 30 3eqtr4g φAωYsucA=iYA
32 31 rneqd φAωranYsucA=raniYA
33 32 unieqd φAωranYsucA=raniYA
34 33 psseq1d φAωranYsucAranYAraniYAranYA
35 25 34 mpbird φAωranYsucAranYA