Description: Lemma for fin23 . Strict order property of Y . (Contributed by Stefan O'Rear, 2-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fin23lem33.f | |
|
fin23lem.f | |
||
fin23lem.g | |
||
fin23lem.h | |
||
fin23lem.i | |
||
Assertion | fin23lem35 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fin23lem33.f | |
|
2 | fin23lem.f | |
|
3 | fin23lem.g | |
|
4 | fin23lem.h | |
|
5 | fin23lem.i | |
|
6 | 1 2 3 4 5 | fin23lem34 | |
7 | fvex | |
|
8 | f1eq1 | |
|
9 | rneq | |
|
10 | 9 | unieqd | |
11 | 10 | sseq1d | |
12 | 8 11 | anbi12d | |
13 | fveq2 | |
|
14 | f1eq1 | |
|
15 | 13 14 | syl | |
16 | 13 | rneqd | |
17 | 16 | unieqd | |
18 | 17 10 | psseq12d | |
19 | 15 18 | anbi12d | |
20 | 12 19 | imbi12d | |
21 | 7 20 | spcv | |
22 | 4 21 | syl | |
23 | 22 | adantr | |
24 | 6 23 | mpd | |
25 | 24 | simprd | |
26 | frsuc | |
|
27 | 26 | adantl | |
28 | 5 | fveq1i | |
29 | 5 | fveq1i | |
30 | 29 | fveq2i | |
31 | 27 28 30 | 3eqtr4g | |
32 | 31 | rneqd | |
33 | 32 | unieqd | |
34 | 33 | psseq1d | |
35 | 25 34 | mpbird | |