Description: Lemma for finsumvtxdg2sstep . (Contributed by AV, 15-Dec-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | finsumvtxdg2sstep.v | |
|
finsumvtxdg2sstep.e | |
||
finsumvtxdg2sstep.k | |
||
finsumvtxdg2sstep.i | |
||
finsumvtxdg2sstep.p | |
||
finsumvtxdg2sstep.s | |
||
finsumvtxdg2ssteplem.j | |
||
Assertion | finsumvtxdg2ssteplem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | finsumvtxdg2sstep.v | |
|
2 | finsumvtxdg2sstep.e | |
|
3 | finsumvtxdg2sstep.k | |
|
4 | finsumvtxdg2sstep.i | |
|
5 | finsumvtxdg2sstep.p | |
|
6 | finsumvtxdg2sstep.s | |
|
7 | finsumvtxdg2ssteplem.j | |
|
8 | upgruhgr | |
|
9 | 2 | uhgrfun | |
10 | 8 9 | syl | |
11 | 10 | ad2antrr | |
12 | simprr | |
|
13 | 4 | ssrab3 | |
14 | 13 | a1i | |
15 | hashreshashfun | |
|
16 | 11 12 14 15 | syl3anc | |
17 | 5 | eqcomi | |
18 | 17 | fveq2i | |
19 | 18 | a1i | |
20 | notrab | |
|
21 | 4 | difeq2i | |
22 | nnel | |
|
23 | 22 | bicomi | |
24 | 23 | rabbii | |
25 | 7 24 | eqtri | |
26 | 20 21 25 | 3eqtr4i | |
27 | 26 | a1i | |
28 | 27 | fveq2d | |
29 | 19 28 | oveq12d | |
30 | 16 29 | eqtrd | |