Metamath Proof Explorer


Theorem finsumvtxdg2ssteplem1

Description: Lemma for finsumvtxdg2sstep . (Contributed by AV, 15-Dec-2021)

Ref Expression
Hypotheses finsumvtxdg2sstep.v V=VtxG
finsumvtxdg2sstep.e E=iEdgG
finsumvtxdg2sstep.k K=VN
finsumvtxdg2sstep.i I=idomE|NEi
finsumvtxdg2sstep.p P=EI
finsumvtxdg2sstep.s S=KP
finsumvtxdg2ssteplem.j J=idomE|NEi
Assertion finsumvtxdg2ssteplem1 GUPGraphNVVFinEFinE=P+J

Proof

Step Hyp Ref Expression
1 finsumvtxdg2sstep.v V=VtxG
2 finsumvtxdg2sstep.e E=iEdgG
3 finsumvtxdg2sstep.k K=VN
4 finsumvtxdg2sstep.i I=idomE|NEi
5 finsumvtxdg2sstep.p P=EI
6 finsumvtxdg2sstep.s S=KP
7 finsumvtxdg2ssteplem.j J=idomE|NEi
8 upgruhgr GUPGraphGUHGraph
9 2 uhgrfun GUHGraphFunE
10 8 9 syl GUPGraphFunE
11 10 ad2antrr GUPGraphNVVFinEFinFunE
12 simprr GUPGraphNVVFinEFinEFin
13 4 ssrab3 IdomE
14 13 a1i GUPGraphNVVFinEFinIdomE
15 hashreshashfun FunEEFinIdomEE=EI+domEI
16 11 12 14 15 syl3anc GUPGraphNVVFinEFinE=EI+domEI
17 5 eqcomi EI=P
18 17 fveq2i EI=P
19 18 a1i GUPGraphNVVFinEFinEI=P
20 notrab domEidomE|NEi=idomE|¬NEi
21 4 difeq2i domEI=domEidomE|NEi
22 nnel ¬NEiNEi
23 22 bicomi NEi¬NEi
24 23 rabbii idomE|NEi=idomE|¬NEi
25 7 24 eqtri J=idomE|¬NEi
26 20 21 25 3eqtr4i domEI=J
27 26 a1i GUPGraphNVVFinEFindomEI=J
28 27 fveq2d GUPGraphNVVFinEFindomEI=J
29 19 28 oveq12d GUPGraphNVVFinEFinEI+domEI=P+J
30 16 29 eqtrd GUPGraphNVVFinEFinE=P+J