Metamath Proof Explorer


Theorem fladdz

Description: An integer can be moved in and out of the floor of a sum. (Contributed by NM, 27-Apr-2005) (Proof shortened by Fan Zheng, 16-Jun-2016)

Ref Expression
Assertion fladdz ANA+N=A+N

Proof

Step Hyp Ref Expression
1 reflcl AA
2 1 adantr ANA
3 simpl ANA
4 simpr ANN
5 4 zred ANN
6 flle AAA
7 6 adantr ANAA
8 2 3 5 7 leadd1dd ANA+NA+N
9 1red AN1
10 2 9 readdcld ANA+1
11 flltp1 AA<A+1
12 11 adantr ANA<A+1
13 3 10 5 12 ltadd1dd ANA+N<A+1+N
14 2 recnd ANA
15 1cnd AN1
16 5 recnd ANN
17 14 15 16 add32d ANA+1+N=A+N+1
18 13 17 breqtrd ANA+N<A+N+1
19 3 5 readdcld ANA+N
20 3 flcld ANA
21 20 4 zaddcld ANA+N
22 flbi A+NA+NA+N=A+NA+NA+NA+N<A+N+1
23 19 21 22 syl2anc ANA+N=A+NA+NA+NA+N<A+N+1
24 8 18 23 mpbir2and ANA+N=A+N