Metamath Proof Explorer


Theorem flbi2

Description: A condition equivalent to floor. (Contributed by NM, 15-Aug-2008)

Ref Expression
Assertion flbi2 NFN+F=N0FF<1

Proof

Step Hyp Ref Expression
1 zre NN
2 readdcl NFN+F
3 1 2 sylan NFN+F
4 simpl NFN
5 flbi N+FNN+F=NNN+FN+F<N+1
6 3 4 5 syl2anc NFN+F=NNN+FN+F<N+1
7 addge01 NF0FNN+F
8 1re 1
9 ltadd2 F1NF<1N+F<N+1
10 8 9 mp3an2 FNF<1N+F<N+1
11 10 ancoms NFF<1N+F<N+1
12 7 11 anbi12d NF0FF<1NN+FN+F<N+1
13 1 12 sylan NF0FF<1NN+FN+F<N+1
14 6 13 bitr4d NFN+F=N0FF<1