Metamath Proof Explorer


Theorem fldcatALTV

Description: The restriction of the category of (unital) rings to the set of field homomorphisms is a category, the "category of fields". (Contributed by AV, 20-Feb-2020) (New usage is discouraged.)

Ref Expression
Hypotheses drhmsubcALTV.c C=UDivRing
drhmsubcALTV.j J=rC,sCrRingHoms
fldhmsubcALTV.d D=UField
fldhmsubcALTV.f F=rD,sDrRingHoms
Assertion fldcatALTV UVRingCatALTVUcatFCat

Proof

Step Hyp Ref Expression
1 drhmsubcALTV.c C=UDivRing
2 drhmsubcALTV.j J=rC,sCrRingHoms
3 fldhmsubcALTV.d D=UField
4 fldhmsubcALTV.f F=rD,sDrRingHoms
5 isfld rFieldrDivRingrCRing
6 crngring rCRingrRing
7 6 adantl rDivRingrCRingrRing
8 5 7 sylbi rFieldrRing
9 8 rgen rFieldrRing
10 9 3 4 sringcatALTV UVRingCatALTVUcatFCat