Metamath Proof Explorer


Theorem fldcatALTV

Description: The restriction of the category of (unital) rings to the set of field homomorphisms is a category, the "category of fields". (Contributed by AV, 20-Feb-2020) (New usage is discouraged.)

Ref Expression
Hypotheses drhmsubcALTV.c C = U DivRing
drhmsubcALTV.j J = r C , s C r RingHom s
fldhmsubcALTV.d D = U Field
fldhmsubcALTV.f F = r D , s D r RingHom s
Assertion fldcatALTV U V RingCatALTV U cat F Cat

Proof

Step Hyp Ref Expression
1 drhmsubcALTV.c C = U DivRing
2 drhmsubcALTV.j J = r C , s C r RingHom s
3 fldhmsubcALTV.d D = U Field
4 fldhmsubcALTV.f F = r D , s D r RingHom s
5 isfld r Field r DivRing r CRing
6 crngring r CRing r Ring
7 6 adantl r DivRing r CRing r Ring
8 5 7 sylbi r Field r Ring
9 8 rgen r Field r Ring
10 9 3 4 sringcatALTV U V RingCatALTV U cat F Cat