Metamath Proof Explorer


Theorem fldextrspundgle

Description: Inequality involving the degree of two different field extensions I and J of a same field F . Part of the proof of Proposition 5, Chapter 5, of BourbakiAlg2 p. 116. (Contributed by Thierry Arnoux, 13-Oct-2025)

Ref Expression
Hypotheses fldextrspunfld.k K = L 𝑠 F
fldextrspunfld.i I = L 𝑠 G
fldextrspunfld.j J = L 𝑠 H
fldextrspunfld.2 φ L Field
fldextrspunfld.3 φ F SubDRing I
fldextrspunfld.4 φ F SubDRing J
fldextrspunfld.5 φ G SubDRing L
fldextrspunfld.6 φ H SubDRing L
fldextrspunfld.7 φ J .:. K 0
fldextrspundgle.1 E = L 𝑠 L fldGen G H
Assertion fldextrspundgle φ E .:. I J .:. K

Proof

Step Hyp Ref Expression
1 fldextrspunfld.k K = L 𝑠 F
2 fldextrspunfld.i I = L 𝑠 G
3 fldextrspunfld.j J = L 𝑠 H
4 fldextrspunfld.2 φ L Field
5 fldextrspunfld.3 φ F SubDRing I
6 fldextrspunfld.4 φ F SubDRing J
7 fldextrspunfld.5 φ G SubDRing L
8 fldextrspunfld.6 φ H SubDRing L
9 fldextrspunfld.7 φ J .:. K 0
10 fldextrspundgle.1 E = L 𝑠 L fldGen G H
11 eqid Base L = Base L
12 11 sdrgss H SubDRing L H Base L
13 8 12 syl φ H Base L
14 11 2 10 4 7 13 fldgenfldext φ E /FldExt I
15 extdgval E /FldExt I E .:. I = dim subringAlg E Base I
16 14 15 syl φ E .:. I = dim subringAlg E Base I
17 eqid RingSpan L = RingSpan L
18 eqid RingSpan L G H = RingSpan L G H
19 eqid L 𝑠 RingSpan L G H = L 𝑠 RingSpan L G H
20 1 2 3 4 5 6 7 8 9 17 18 19 fldextrspunlem2 φ RingSpan L G H = L fldGen G H
21 20 oveq2d φ L 𝑠 RingSpan L G H = L 𝑠 L fldGen G H
22 21 10 eqtr4di φ L 𝑠 RingSpan L G H = E
23 22 fveq2d φ subringAlg L 𝑠 RingSpan L G H = subringAlg E
24 11 sdrgss G SubDRing L G Base L
25 2 11 ressbas2 G Base L G = Base I
26 7 24 25 3syl φ G = Base I
27 23 26 fveq12d φ subringAlg L 𝑠 RingSpan L G H G = subringAlg E Base I
28 27 fveq2d φ dim subringAlg L 𝑠 RingSpan L G H G = dim subringAlg E Base I
29 1 2 3 4 5 6 7 8 9 17 18 19 fldextrspunlem1 φ dim subringAlg L 𝑠 RingSpan L G H G J .:. K
30 28 29 eqbrtrrd φ dim subringAlg E Base I J .:. K
31 16 30 eqbrtrd φ E .:. I J .:. K