| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fldextrspunfld.k |
|- K = ( L |`s F ) |
| 2 |
|
fldextrspunfld.i |
|- I = ( L |`s G ) |
| 3 |
|
fldextrspunfld.j |
|- J = ( L |`s H ) |
| 4 |
|
fldextrspunfld.2 |
|- ( ph -> L e. Field ) |
| 5 |
|
fldextrspunfld.3 |
|- ( ph -> F e. ( SubDRing ` I ) ) |
| 6 |
|
fldextrspunfld.4 |
|- ( ph -> F e. ( SubDRing ` J ) ) |
| 7 |
|
fldextrspunfld.5 |
|- ( ph -> G e. ( SubDRing ` L ) ) |
| 8 |
|
fldextrspunfld.6 |
|- ( ph -> H e. ( SubDRing ` L ) ) |
| 9 |
|
fldextrspunfld.7 |
|- ( ph -> ( J [:] K ) e. NN0 ) |
| 10 |
|
fldextrspundgle.1 |
|- E = ( L |`s ( L fldGen ( G u. H ) ) ) |
| 11 |
|
eqid |
|- ( Base ` L ) = ( Base ` L ) |
| 12 |
11
|
sdrgss |
|- ( H e. ( SubDRing ` L ) -> H C_ ( Base ` L ) ) |
| 13 |
8 12
|
syl |
|- ( ph -> H C_ ( Base ` L ) ) |
| 14 |
11 2 10 4 7 13
|
fldgenfldext |
|- ( ph -> E /FldExt I ) |
| 15 |
|
extdgval |
|- ( E /FldExt I -> ( E [:] I ) = ( dim ` ( ( subringAlg ` E ) ` ( Base ` I ) ) ) ) |
| 16 |
14 15
|
syl |
|- ( ph -> ( E [:] I ) = ( dim ` ( ( subringAlg ` E ) ` ( Base ` I ) ) ) ) |
| 17 |
|
eqid |
|- ( RingSpan ` L ) = ( RingSpan ` L ) |
| 18 |
|
eqid |
|- ( ( RingSpan ` L ) ` ( G u. H ) ) = ( ( RingSpan ` L ) ` ( G u. H ) ) |
| 19 |
|
eqid |
|- ( L |`s ( ( RingSpan ` L ) ` ( G u. H ) ) ) = ( L |`s ( ( RingSpan ` L ) ` ( G u. H ) ) ) |
| 20 |
1 2 3 4 5 6 7 8 9 17 18 19
|
fldextrspunlem2 |
|- ( ph -> ( ( RingSpan ` L ) ` ( G u. H ) ) = ( L fldGen ( G u. H ) ) ) |
| 21 |
20
|
oveq2d |
|- ( ph -> ( L |`s ( ( RingSpan ` L ) ` ( G u. H ) ) ) = ( L |`s ( L fldGen ( G u. H ) ) ) ) |
| 22 |
21 10
|
eqtr4di |
|- ( ph -> ( L |`s ( ( RingSpan ` L ) ` ( G u. H ) ) ) = E ) |
| 23 |
22
|
fveq2d |
|- ( ph -> ( subringAlg ` ( L |`s ( ( RingSpan ` L ) ` ( G u. H ) ) ) ) = ( subringAlg ` E ) ) |
| 24 |
11
|
sdrgss |
|- ( G e. ( SubDRing ` L ) -> G C_ ( Base ` L ) ) |
| 25 |
2 11
|
ressbas2 |
|- ( G C_ ( Base ` L ) -> G = ( Base ` I ) ) |
| 26 |
7 24 25
|
3syl |
|- ( ph -> G = ( Base ` I ) ) |
| 27 |
23 26
|
fveq12d |
|- ( ph -> ( ( subringAlg ` ( L |`s ( ( RingSpan ` L ) ` ( G u. H ) ) ) ) ` G ) = ( ( subringAlg ` E ) ` ( Base ` I ) ) ) |
| 28 |
27
|
fveq2d |
|- ( ph -> ( dim ` ( ( subringAlg ` ( L |`s ( ( RingSpan ` L ) ` ( G u. H ) ) ) ) ` G ) ) = ( dim ` ( ( subringAlg ` E ) ` ( Base ` I ) ) ) ) |
| 29 |
1 2 3 4 5 6 7 8 9 17 18 19
|
fldextrspunlem1 |
|- ( ph -> ( dim ` ( ( subringAlg ` ( L |`s ( ( RingSpan ` L ) ` ( G u. H ) ) ) ) ` G ) ) <_ ( J [:] K ) ) |
| 30 |
28 29
|
eqbrtrrd |
|- ( ph -> ( dim ` ( ( subringAlg ` E ) ` ( Base ` I ) ) ) <_ ( J [:] K ) ) |
| 31 |
16 30
|
eqbrtrd |
|- ( ph -> ( E [:] I ) <_ ( J [:] K ) ) |