| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fldextrspunfld.k |
⊢ 𝐾 = ( 𝐿 ↾s 𝐹 ) |
| 2 |
|
fldextrspunfld.i |
⊢ 𝐼 = ( 𝐿 ↾s 𝐺 ) |
| 3 |
|
fldextrspunfld.j |
⊢ 𝐽 = ( 𝐿 ↾s 𝐻 ) |
| 4 |
|
fldextrspunfld.2 |
⊢ ( 𝜑 → 𝐿 ∈ Field ) |
| 5 |
|
fldextrspunfld.3 |
⊢ ( 𝜑 → 𝐹 ∈ ( SubDRing ‘ 𝐼 ) ) |
| 6 |
|
fldextrspunfld.4 |
⊢ ( 𝜑 → 𝐹 ∈ ( SubDRing ‘ 𝐽 ) ) |
| 7 |
|
fldextrspunfld.5 |
⊢ ( 𝜑 → 𝐺 ∈ ( SubDRing ‘ 𝐿 ) ) |
| 8 |
|
fldextrspunfld.6 |
⊢ ( 𝜑 → 𝐻 ∈ ( SubDRing ‘ 𝐿 ) ) |
| 9 |
|
fldextrspunfld.7 |
⊢ ( 𝜑 → ( 𝐽 [:] 𝐾 ) ∈ ℕ0 ) |
| 10 |
|
fldextrspundgle.1 |
⊢ 𝐸 = ( 𝐿 ↾s ( 𝐿 fldGen ( 𝐺 ∪ 𝐻 ) ) ) |
| 11 |
|
eqid |
⊢ ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 ) |
| 12 |
11
|
sdrgss |
⊢ ( 𝐻 ∈ ( SubDRing ‘ 𝐿 ) → 𝐻 ⊆ ( Base ‘ 𝐿 ) ) |
| 13 |
8 12
|
syl |
⊢ ( 𝜑 → 𝐻 ⊆ ( Base ‘ 𝐿 ) ) |
| 14 |
11 2 10 4 7 13
|
fldgenfldext |
⊢ ( 𝜑 → 𝐸 /FldExt 𝐼 ) |
| 15 |
|
extdgval |
⊢ ( 𝐸 /FldExt 𝐼 → ( 𝐸 [:] 𝐼 ) = ( dim ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐼 ) ) ) ) |
| 16 |
14 15
|
syl |
⊢ ( 𝜑 → ( 𝐸 [:] 𝐼 ) = ( dim ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐼 ) ) ) ) |
| 17 |
|
eqid |
⊢ ( RingSpan ‘ 𝐿 ) = ( RingSpan ‘ 𝐿 ) |
| 18 |
|
eqid |
⊢ ( ( RingSpan ‘ 𝐿 ) ‘ ( 𝐺 ∪ 𝐻 ) ) = ( ( RingSpan ‘ 𝐿 ) ‘ ( 𝐺 ∪ 𝐻 ) ) |
| 19 |
|
eqid |
⊢ ( 𝐿 ↾s ( ( RingSpan ‘ 𝐿 ) ‘ ( 𝐺 ∪ 𝐻 ) ) ) = ( 𝐿 ↾s ( ( RingSpan ‘ 𝐿 ) ‘ ( 𝐺 ∪ 𝐻 ) ) ) |
| 20 |
1 2 3 4 5 6 7 8 9 17 18 19
|
fldextrspunlem2 |
⊢ ( 𝜑 → ( ( RingSpan ‘ 𝐿 ) ‘ ( 𝐺 ∪ 𝐻 ) ) = ( 𝐿 fldGen ( 𝐺 ∪ 𝐻 ) ) ) |
| 21 |
20
|
oveq2d |
⊢ ( 𝜑 → ( 𝐿 ↾s ( ( RingSpan ‘ 𝐿 ) ‘ ( 𝐺 ∪ 𝐻 ) ) ) = ( 𝐿 ↾s ( 𝐿 fldGen ( 𝐺 ∪ 𝐻 ) ) ) ) |
| 22 |
21 10
|
eqtr4di |
⊢ ( 𝜑 → ( 𝐿 ↾s ( ( RingSpan ‘ 𝐿 ) ‘ ( 𝐺 ∪ 𝐻 ) ) ) = 𝐸 ) |
| 23 |
22
|
fveq2d |
⊢ ( 𝜑 → ( subringAlg ‘ ( 𝐿 ↾s ( ( RingSpan ‘ 𝐿 ) ‘ ( 𝐺 ∪ 𝐻 ) ) ) ) = ( subringAlg ‘ 𝐸 ) ) |
| 24 |
11
|
sdrgss |
⊢ ( 𝐺 ∈ ( SubDRing ‘ 𝐿 ) → 𝐺 ⊆ ( Base ‘ 𝐿 ) ) |
| 25 |
2 11
|
ressbas2 |
⊢ ( 𝐺 ⊆ ( Base ‘ 𝐿 ) → 𝐺 = ( Base ‘ 𝐼 ) ) |
| 26 |
7 24 25
|
3syl |
⊢ ( 𝜑 → 𝐺 = ( Base ‘ 𝐼 ) ) |
| 27 |
23 26
|
fveq12d |
⊢ ( 𝜑 → ( ( subringAlg ‘ ( 𝐿 ↾s ( ( RingSpan ‘ 𝐿 ) ‘ ( 𝐺 ∪ 𝐻 ) ) ) ) ‘ 𝐺 ) = ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐼 ) ) ) |
| 28 |
27
|
fveq2d |
⊢ ( 𝜑 → ( dim ‘ ( ( subringAlg ‘ ( 𝐿 ↾s ( ( RingSpan ‘ 𝐿 ) ‘ ( 𝐺 ∪ 𝐻 ) ) ) ) ‘ 𝐺 ) ) = ( dim ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐼 ) ) ) ) |
| 29 |
1 2 3 4 5 6 7 8 9 17 18 19
|
fldextrspunlem1 |
⊢ ( 𝜑 → ( dim ‘ ( ( subringAlg ‘ ( 𝐿 ↾s ( ( RingSpan ‘ 𝐿 ) ‘ ( 𝐺 ∪ 𝐻 ) ) ) ) ‘ 𝐺 ) ) ≤ ( 𝐽 [:] 𝐾 ) ) |
| 30 |
28 29
|
eqbrtrrd |
⊢ ( 𝜑 → ( dim ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐼 ) ) ) ≤ ( 𝐽 [:] 𝐾 ) ) |
| 31 |
16 30
|
eqbrtrd |
⊢ ( 𝜑 → ( 𝐸 [:] 𝐼 ) ≤ ( 𝐽 [:] 𝐾 ) ) |