Metamath Proof Explorer


Theorem fldextrspundgle

Description: Inequality involving the degree of two different field extensions I and J of a same field F . Part of the proof of Proposition 5, Chapter 5, of BourbakiAlg2 p. 116. (Contributed by Thierry Arnoux, 13-Oct-2025)

Ref Expression
Hypotheses fldextrspunfld.k 𝐾 = ( 𝐿s 𝐹 )
fldextrspunfld.i 𝐼 = ( 𝐿s 𝐺 )
fldextrspunfld.j 𝐽 = ( 𝐿s 𝐻 )
fldextrspunfld.2 ( 𝜑𝐿 ∈ Field )
fldextrspunfld.3 ( 𝜑𝐹 ∈ ( SubDRing ‘ 𝐼 ) )
fldextrspunfld.4 ( 𝜑𝐹 ∈ ( SubDRing ‘ 𝐽 ) )
fldextrspunfld.5 ( 𝜑𝐺 ∈ ( SubDRing ‘ 𝐿 ) )
fldextrspunfld.6 ( 𝜑𝐻 ∈ ( SubDRing ‘ 𝐿 ) )
fldextrspunfld.7 ( 𝜑 → ( 𝐽 [:] 𝐾 ) ∈ ℕ0 )
fldextrspundgle.1 𝐸 = ( 𝐿s ( 𝐿 fldGen ( 𝐺𝐻 ) ) )
Assertion fldextrspundgle ( 𝜑 → ( 𝐸 [:] 𝐼 ) ≤ ( 𝐽 [:] 𝐾 ) )

Proof

Step Hyp Ref Expression
1 fldextrspunfld.k 𝐾 = ( 𝐿s 𝐹 )
2 fldextrspunfld.i 𝐼 = ( 𝐿s 𝐺 )
3 fldextrspunfld.j 𝐽 = ( 𝐿s 𝐻 )
4 fldextrspunfld.2 ( 𝜑𝐿 ∈ Field )
5 fldextrspunfld.3 ( 𝜑𝐹 ∈ ( SubDRing ‘ 𝐼 ) )
6 fldextrspunfld.4 ( 𝜑𝐹 ∈ ( SubDRing ‘ 𝐽 ) )
7 fldextrspunfld.5 ( 𝜑𝐺 ∈ ( SubDRing ‘ 𝐿 ) )
8 fldextrspunfld.6 ( 𝜑𝐻 ∈ ( SubDRing ‘ 𝐿 ) )
9 fldextrspunfld.7 ( 𝜑 → ( 𝐽 [:] 𝐾 ) ∈ ℕ0 )
10 fldextrspundgle.1 𝐸 = ( 𝐿s ( 𝐿 fldGen ( 𝐺𝐻 ) ) )
11 eqid ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 )
12 11 sdrgss ( 𝐻 ∈ ( SubDRing ‘ 𝐿 ) → 𝐻 ⊆ ( Base ‘ 𝐿 ) )
13 8 12 syl ( 𝜑𝐻 ⊆ ( Base ‘ 𝐿 ) )
14 11 2 10 4 7 13 fldgenfldext ( 𝜑𝐸 /FldExt 𝐼 )
15 extdgval ( 𝐸 /FldExt 𝐼 → ( 𝐸 [:] 𝐼 ) = ( dim ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐼 ) ) ) )
16 14 15 syl ( 𝜑 → ( 𝐸 [:] 𝐼 ) = ( dim ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐼 ) ) ) )
17 eqid ( RingSpan ‘ 𝐿 ) = ( RingSpan ‘ 𝐿 )
18 eqid ( ( RingSpan ‘ 𝐿 ) ‘ ( 𝐺𝐻 ) ) = ( ( RingSpan ‘ 𝐿 ) ‘ ( 𝐺𝐻 ) )
19 eqid ( 𝐿s ( ( RingSpan ‘ 𝐿 ) ‘ ( 𝐺𝐻 ) ) ) = ( 𝐿s ( ( RingSpan ‘ 𝐿 ) ‘ ( 𝐺𝐻 ) ) )
20 1 2 3 4 5 6 7 8 9 17 18 19 fldextrspunlem2 ( 𝜑 → ( ( RingSpan ‘ 𝐿 ) ‘ ( 𝐺𝐻 ) ) = ( 𝐿 fldGen ( 𝐺𝐻 ) ) )
21 20 oveq2d ( 𝜑 → ( 𝐿s ( ( RingSpan ‘ 𝐿 ) ‘ ( 𝐺𝐻 ) ) ) = ( 𝐿s ( 𝐿 fldGen ( 𝐺𝐻 ) ) ) )
22 21 10 eqtr4di ( 𝜑 → ( 𝐿s ( ( RingSpan ‘ 𝐿 ) ‘ ( 𝐺𝐻 ) ) ) = 𝐸 )
23 22 fveq2d ( 𝜑 → ( subringAlg ‘ ( 𝐿s ( ( RingSpan ‘ 𝐿 ) ‘ ( 𝐺𝐻 ) ) ) ) = ( subringAlg ‘ 𝐸 ) )
24 11 sdrgss ( 𝐺 ∈ ( SubDRing ‘ 𝐿 ) → 𝐺 ⊆ ( Base ‘ 𝐿 ) )
25 2 11 ressbas2 ( 𝐺 ⊆ ( Base ‘ 𝐿 ) → 𝐺 = ( Base ‘ 𝐼 ) )
26 7 24 25 3syl ( 𝜑𝐺 = ( Base ‘ 𝐼 ) )
27 23 26 fveq12d ( 𝜑 → ( ( subringAlg ‘ ( 𝐿s ( ( RingSpan ‘ 𝐿 ) ‘ ( 𝐺𝐻 ) ) ) ) ‘ 𝐺 ) = ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐼 ) ) )
28 27 fveq2d ( 𝜑 → ( dim ‘ ( ( subringAlg ‘ ( 𝐿s ( ( RingSpan ‘ 𝐿 ) ‘ ( 𝐺𝐻 ) ) ) ) ‘ 𝐺 ) ) = ( dim ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐼 ) ) ) )
29 1 2 3 4 5 6 7 8 9 17 18 19 fldextrspunlem1 ( 𝜑 → ( dim ‘ ( ( subringAlg ‘ ( 𝐿s ( ( RingSpan ‘ 𝐿 ) ‘ ( 𝐺𝐻 ) ) ) ) ‘ 𝐺 ) ) ≤ ( 𝐽 [:] 𝐾 ) )
30 28 29 eqbrtrrd ( 𝜑 → ( dim ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐼 ) ) ) ≤ ( 𝐽 [:] 𝐾 ) )
31 16 30 eqbrtrd ( 𝜑 → ( 𝐸 [:] 𝐼 ) ≤ ( 𝐽 [:] 𝐾 ) )