Metamath Proof Explorer


Theorem fldextrspunlem2

Description: Part of the proof of Proposition 5, Chapter 5, of BourbakiAlg2 p. 116. (Contributed by Thierry Arnoux, 13-Oct-2025)

Ref Expression
Hypotheses fldextrspunfld.k 𝐾 = ( 𝐿s 𝐹 )
fldextrspunfld.i 𝐼 = ( 𝐿s 𝐺 )
fldextrspunfld.j 𝐽 = ( 𝐿s 𝐻 )
fldextrspunfld.2 ( 𝜑𝐿 ∈ Field )
fldextrspunfld.3 ( 𝜑𝐹 ∈ ( SubDRing ‘ 𝐼 ) )
fldextrspunfld.4 ( 𝜑𝐹 ∈ ( SubDRing ‘ 𝐽 ) )
fldextrspunfld.5 ( 𝜑𝐺 ∈ ( SubDRing ‘ 𝐿 ) )
fldextrspunfld.6 ( 𝜑𝐻 ∈ ( SubDRing ‘ 𝐿 ) )
fldextrspunfld.7 ( 𝜑 → ( 𝐽 [:] 𝐾 ) ∈ ℕ0 )
fldextrspunfld.n 𝑁 = ( RingSpan ‘ 𝐿 )
fldextrspunfld.c 𝐶 = ( 𝑁 ‘ ( 𝐺𝐻 ) )
fldextrspunfld.e 𝐸 = ( 𝐿s 𝐶 )
Assertion fldextrspunlem2 ( 𝜑𝐶 = ( 𝐿 fldGen ( 𝐺𝐻 ) ) )

Proof

Step Hyp Ref Expression
1 fldextrspunfld.k 𝐾 = ( 𝐿s 𝐹 )
2 fldextrspunfld.i 𝐼 = ( 𝐿s 𝐺 )
3 fldextrspunfld.j 𝐽 = ( 𝐿s 𝐻 )
4 fldextrspunfld.2 ( 𝜑𝐿 ∈ Field )
5 fldextrspunfld.3 ( 𝜑𝐹 ∈ ( SubDRing ‘ 𝐼 ) )
6 fldextrspunfld.4 ( 𝜑𝐹 ∈ ( SubDRing ‘ 𝐽 ) )
7 fldextrspunfld.5 ( 𝜑𝐺 ∈ ( SubDRing ‘ 𝐿 ) )
8 fldextrspunfld.6 ( 𝜑𝐻 ∈ ( SubDRing ‘ 𝐿 ) )
9 fldextrspunfld.7 ( 𝜑 → ( 𝐽 [:] 𝐾 ) ∈ ℕ0 )
10 fldextrspunfld.n 𝑁 = ( RingSpan ‘ 𝐿 )
11 fldextrspunfld.c 𝐶 = ( 𝑁 ‘ ( 𝐺𝐻 ) )
12 fldextrspunfld.e 𝐸 = ( 𝐿s 𝐶 )
13 4 flddrngd ( 𝜑𝐿 ∈ DivRing )
14 13 drngringd ( 𝜑𝐿 ∈ Ring )
15 eqidd ( 𝜑 → ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 ) )
16 eqid ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 )
17 16 sdrgss ( 𝐺 ∈ ( SubDRing ‘ 𝐿 ) → 𝐺 ⊆ ( Base ‘ 𝐿 ) )
18 7 17 syl ( 𝜑𝐺 ⊆ ( Base ‘ 𝐿 ) )
19 16 sdrgss ( 𝐻 ∈ ( SubDRing ‘ 𝐿 ) → 𝐻 ⊆ ( Base ‘ 𝐿 ) )
20 8 19 syl ( 𝜑𝐻 ⊆ ( Base ‘ 𝐿 ) )
21 18 20 unssd ( 𝜑 → ( 𝐺𝐻 ) ⊆ ( Base ‘ 𝐿 ) )
22 10 a1i ( 𝜑𝑁 = ( RingSpan ‘ 𝐿 ) )
23 11 a1i ( 𝜑𝐶 = ( 𝑁 ‘ ( 𝐺𝐻 ) ) )
24 16 13 21 fldgensdrg ( 𝜑 → ( 𝐿 fldGen ( 𝐺𝐻 ) ) ∈ ( SubDRing ‘ 𝐿 ) )
25 sdrgsubrg ( ( 𝐿 fldGen ( 𝐺𝐻 ) ) ∈ ( SubDRing ‘ 𝐿 ) → ( 𝐿 fldGen ( 𝐺𝐻 ) ) ∈ ( SubRing ‘ 𝐿 ) )
26 24 25 syl ( 𝜑 → ( 𝐿 fldGen ( 𝐺𝐻 ) ) ∈ ( SubRing ‘ 𝐿 ) )
27 16 13 21 fldgenssid ( 𝜑 → ( 𝐺𝐻 ) ⊆ ( 𝐿 fldGen ( 𝐺𝐻 ) ) )
28 14 15 21 22 23 26 27 rgspnmin ( 𝜑𝐶 ⊆ ( 𝐿 fldGen ( 𝐺𝐻 ) ) )
29 14 15 21 22 23 rgspncl ( 𝜑𝐶 ∈ ( SubRing ‘ 𝐿 ) )
30 1 2 3 4 5 6 7 8 9 10 11 12 fldextrspunfld ( 𝜑𝐸 ∈ Field )
31 30 flddrngd ( 𝜑𝐸 ∈ DivRing )
32 12 31 eqeltrrid ( 𝜑 → ( 𝐿s 𝐶 ) ∈ DivRing )
33 issdrg ( 𝐶 ∈ ( SubDRing ‘ 𝐿 ) ↔ ( 𝐿 ∈ DivRing ∧ 𝐶 ∈ ( SubRing ‘ 𝐿 ) ∧ ( 𝐿s 𝐶 ) ∈ DivRing ) )
34 13 29 32 33 syl3anbrc ( 𝜑𝐶 ∈ ( SubDRing ‘ 𝐿 ) )
35 14 15 21 22 23 rgspnssid ( 𝜑 → ( 𝐺𝐻 ) ⊆ 𝐶 )
36 16 13 34 35 fldgenssp ( 𝜑 → ( 𝐿 fldGen ( 𝐺𝐻 ) ) ⊆ 𝐶 )
37 28 36 eqssd ( 𝜑𝐶 = ( 𝐿 fldGen ( 𝐺𝐻 ) ) )