| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fldextrspunfld.k |
⊢ 𝐾 = ( 𝐿 ↾s 𝐹 ) |
| 2 |
|
fldextrspunfld.i |
⊢ 𝐼 = ( 𝐿 ↾s 𝐺 ) |
| 3 |
|
fldextrspunfld.j |
⊢ 𝐽 = ( 𝐿 ↾s 𝐻 ) |
| 4 |
|
fldextrspunfld.2 |
⊢ ( 𝜑 → 𝐿 ∈ Field ) |
| 5 |
|
fldextrspunfld.3 |
⊢ ( 𝜑 → 𝐹 ∈ ( SubDRing ‘ 𝐼 ) ) |
| 6 |
|
fldextrspunfld.4 |
⊢ ( 𝜑 → 𝐹 ∈ ( SubDRing ‘ 𝐽 ) ) |
| 7 |
|
fldextrspunfld.5 |
⊢ ( 𝜑 → 𝐺 ∈ ( SubDRing ‘ 𝐿 ) ) |
| 8 |
|
fldextrspunfld.6 |
⊢ ( 𝜑 → 𝐻 ∈ ( SubDRing ‘ 𝐿 ) ) |
| 9 |
|
fldextrspunfld.7 |
⊢ ( 𝜑 → ( 𝐽 [:] 𝐾 ) ∈ ℕ0 ) |
| 10 |
|
fldextrspunfld.n |
⊢ 𝑁 = ( RingSpan ‘ 𝐿 ) |
| 11 |
|
fldextrspunfld.c |
⊢ 𝐶 = ( 𝑁 ‘ ( 𝐺 ∪ 𝐻 ) ) |
| 12 |
|
fldextrspunfld.e |
⊢ 𝐸 = ( 𝐿 ↾s 𝐶 ) |
| 13 |
4
|
flddrngd |
⊢ ( 𝜑 → 𝐿 ∈ DivRing ) |
| 14 |
13
|
drngringd |
⊢ ( 𝜑 → 𝐿 ∈ Ring ) |
| 15 |
|
eqidd |
⊢ ( 𝜑 → ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 ) ) |
| 16 |
|
eqid |
⊢ ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 ) |
| 17 |
16
|
sdrgss |
⊢ ( 𝐺 ∈ ( SubDRing ‘ 𝐿 ) → 𝐺 ⊆ ( Base ‘ 𝐿 ) ) |
| 18 |
7 17
|
syl |
⊢ ( 𝜑 → 𝐺 ⊆ ( Base ‘ 𝐿 ) ) |
| 19 |
16
|
sdrgss |
⊢ ( 𝐻 ∈ ( SubDRing ‘ 𝐿 ) → 𝐻 ⊆ ( Base ‘ 𝐿 ) ) |
| 20 |
8 19
|
syl |
⊢ ( 𝜑 → 𝐻 ⊆ ( Base ‘ 𝐿 ) ) |
| 21 |
18 20
|
unssd |
⊢ ( 𝜑 → ( 𝐺 ∪ 𝐻 ) ⊆ ( Base ‘ 𝐿 ) ) |
| 22 |
10
|
a1i |
⊢ ( 𝜑 → 𝑁 = ( RingSpan ‘ 𝐿 ) ) |
| 23 |
11
|
a1i |
⊢ ( 𝜑 → 𝐶 = ( 𝑁 ‘ ( 𝐺 ∪ 𝐻 ) ) ) |
| 24 |
16 13 21
|
fldgensdrg |
⊢ ( 𝜑 → ( 𝐿 fldGen ( 𝐺 ∪ 𝐻 ) ) ∈ ( SubDRing ‘ 𝐿 ) ) |
| 25 |
|
sdrgsubrg |
⊢ ( ( 𝐿 fldGen ( 𝐺 ∪ 𝐻 ) ) ∈ ( SubDRing ‘ 𝐿 ) → ( 𝐿 fldGen ( 𝐺 ∪ 𝐻 ) ) ∈ ( SubRing ‘ 𝐿 ) ) |
| 26 |
24 25
|
syl |
⊢ ( 𝜑 → ( 𝐿 fldGen ( 𝐺 ∪ 𝐻 ) ) ∈ ( SubRing ‘ 𝐿 ) ) |
| 27 |
16 13 21
|
fldgenssid |
⊢ ( 𝜑 → ( 𝐺 ∪ 𝐻 ) ⊆ ( 𝐿 fldGen ( 𝐺 ∪ 𝐻 ) ) ) |
| 28 |
14 15 21 22 23 26 27
|
rgspnmin |
⊢ ( 𝜑 → 𝐶 ⊆ ( 𝐿 fldGen ( 𝐺 ∪ 𝐻 ) ) ) |
| 29 |
14 15 21 22 23
|
rgspncl |
⊢ ( 𝜑 → 𝐶 ∈ ( SubRing ‘ 𝐿 ) ) |
| 30 |
1 2 3 4 5 6 7 8 9 10 11 12
|
fldextrspunfld |
⊢ ( 𝜑 → 𝐸 ∈ Field ) |
| 31 |
30
|
flddrngd |
⊢ ( 𝜑 → 𝐸 ∈ DivRing ) |
| 32 |
12 31
|
eqeltrrid |
⊢ ( 𝜑 → ( 𝐿 ↾s 𝐶 ) ∈ DivRing ) |
| 33 |
|
issdrg |
⊢ ( 𝐶 ∈ ( SubDRing ‘ 𝐿 ) ↔ ( 𝐿 ∈ DivRing ∧ 𝐶 ∈ ( SubRing ‘ 𝐿 ) ∧ ( 𝐿 ↾s 𝐶 ) ∈ DivRing ) ) |
| 34 |
13 29 32 33
|
syl3anbrc |
⊢ ( 𝜑 → 𝐶 ∈ ( SubDRing ‘ 𝐿 ) ) |
| 35 |
14 15 21 22 23
|
rgspnssid |
⊢ ( 𝜑 → ( 𝐺 ∪ 𝐻 ) ⊆ 𝐶 ) |
| 36 |
16 13 34 35
|
fldgenssp |
⊢ ( 𝜑 → ( 𝐿 fldGen ( 𝐺 ∪ 𝐻 ) ) ⊆ 𝐶 ) |
| 37 |
28 36
|
eqssd |
⊢ ( 𝜑 → 𝐶 = ( 𝐿 fldGen ( 𝐺 ∪ 𝐻 ) ) ) |