| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fldextrspunfld.k |
|- K = ( L |`s F ) |
| 2 |
|
fldextrspunfld.i |
|- I = ( L |`s G ) |
| 3 |
|
fldextrspunfld.j |
|- J = ( L |`s H ) |
| 4 |
|
fldextrspunfld.2 |
|- ( ph -> L e. Field ) |
| 5 |
|
fldextrspunfld.3 |
|- ( ph -> F e. ( SubDRing ` I ) ) |
| 6 |
|
fldextrspunfld.4 |
|- ( ph -> F e. ( SubDRing ` J ) ) |
| 7 |
|
fldextrspunfld.5 |
|- ( ph -> G e. ( SubDRing ` L ) ) |
| 8 |
|
fldextrspunfld.6 |
|- ( ph -> H e. ( SubDRing ` L ) ) |
| 9 |
|
fldextrspunfld.7 |
|- ( ph -> ( J [:] K ) e. NN0 ) |
| 10 |
|
fldextrspunfld.n |
|- N = ( RingSpan ` L ) |
| 11 |
|
fldextrspunfld.c |
|- C = ( N ` ( G u. H ) ) |
| 12 |
|
fldextrspunfld.e |
|- E = ( L |`s C ) |
| 13 |
4
|
flddrngd |
|- ( ph -> L e. DivRing ) |
| 14 |
13
|
drngringd |
|- ( ph -> L e. Ring ) |
| 15 |
|
eqidd |
|- ( ph -> ( Base ` L ) = ( Base ` L ) ) |
| 16 |
|
eqid |
|- ( Base ` L ) = ( Base ` L ) |
| 17 |
16
|
sdrgss |
|- ( G e. ( SubDRing ` L ) -> G C_ ( Base ` L ) ) |
| 18 |
7 17
|
syl |
|- ( ph -> G C_ ( Base ` L ) ) |
| 19 |
16
|
sdrgss |
|- ( H e. ( SubDRing ` L ) -> H C_ ( Base ` L ) ) |
| 20 |
8 19
|
syl |
|- ( ph -> H C_ ( Base ` L ) ) |
| 21 |
18 20
|
unssd |
|- ( ph -> ( G u. H ) C_ ( Base ` L ) ) |
| 22 |
10
|
a1i |
|- ( ph -> N = ( RingSpan ` L ) ) |
| 23 |
11
|
a1i |
|- ( ph -> C = ( N ` ( G u. H ) ) ) |
| 24 |
16 13 21
|
fldgensdrg |
|- ( ph -> ( L fldGen ( G u. H ) ) e. ( SubDRing ` L ) ) |
| 25 |
|
sdrgsubrg |
|- ( ( L fldGen ( G u. H ) ) e. ( SubDRing ` L ) -> ( L fldGen ( G u. H ) ) e. ( SubRing ` L ) ) |
| 26 |
24 25
|
syl |
|- ( ph -> ( L fldGen ( G u. H ) ) e. ( SubRing ` L ) ) |
| 27 |
16 13 21
|
fldgenssid |
|- ( ph -> ( G u. H ) C_ ( L fldGen ( G u. H ) ) ) |
| 28 |
14 15 21 22 23 26 27
|
rgspnmin |
|- ( ph -> C C_ ( L fldGen ( G u. H ) ) ) |
| 29 |
14 15 21 22 23
|
rgspncl |
|- ( ph -> C e. ( SubRing ` L ) ) |
| 30 |
1 2 3 4 5 6 7 8 9 10 11 12
|
fldextrspunfld |
|- ( ph -> E e. Field ) |
| 31 |
30
|
flddrngd |
|- ( ph -> E e. DivRing ) |
| 32 |
12 31
|
eqeltrrid |
|- ( ph -> ( L |`s C ) e. DivRing ) |
| 33 |
|
issdrg |
|- ( C e. ( SubDRing ` L ) <-> ( L e. DivRing /\ C e. ( SubRing ` L ) /\ ( L |`s C ) e. DivRing ) ) |
| 34 |
13 29 32 33
|
syl3anbrc |
|- ( ph -> C e. ( SubDRing ` L ) ) |
| 35 |
14 15 21 22 23
|
rgspnssid |
|- ( ph -> ( G u. H ) C_ C ) |
| 36 |
16 13 34 35
|
fldgenssp |
|- ( ph -> ( L fldGen ( G u. H ) ) C_ C ) |
| 37 |
28 36
|
eqssd |
|- ( ph -> C = ( L fldGen ( G u. H ) ) ) |