| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fldextrspunfld.k |
|- K = ( L |`s F ) |
| 2 |
|
fldextrspunfld.i |
|- I = ( L |`s G ) |
| 3 |
|
fldextrspunfld.j |
|- J = ( L |`s H ) |
| 4 |
|
fldextrspunfld.2 |
|- ( ph -> L e. Field ) |
| 5 |
|
fldextrspunfld.3 |
|- ( ph -> F e. ( SubDRing ` I ) ) |
| 6 |
|
fldextrspunfld.4 |
|- ( ph -> F e. ( SubDRing ` J ) ) |
| 7 |
|
fldextrspunfld.5 |
|- ( ph -> G e. ( SubDRing ` L ) ) |
| 8 |
|
fldextrspunfld.6 |
|- ( ph -> H e. ( SubDRing ` L ) ) |
| 9 |
|
fldextrspunfld.7 |
|- ( ph -> ( J [:] K ) e. NN0 ) |
| 10 |
|
fldextrspunfld.n |
|- N = ( RingSpan ` L ) |
| 11 |
|
fldextrspunfld.c |
|- C = ( N ` ( G u. H ) ) |
| 12 |
|
fldextrspunfld.e |
|- E = ( L |`s C ) |
| 13 |
|
eqid |
|- ( Scalar ` ( ( subringAlg ` E ) ` G ) ) = ( Scalar ` ( ( subringAlg ` E ) ` G ) ) |
| 14 |
4
|
flddrngd |
|- ( ph -> L e. DivRing ) |
| 15 |
14
|
drngringd |
|- ( ph -> L e. Ring ) |
| 16 |
|
eqidd |
|- ( ph -> ( Base ` L ) = ( Base ` L ) ) |
| 17 |
|
eqid |
|- ( Base ` L ) = ( Base ` L ) |
| 18 |
17
|
sdrgss |
|- ( G e. ( SubDRing ` L ) -> G C_ ( Base ` L ) ) |
| 19 |
7 18
|
syl |
|- ( ph -> G C_ ( Base ` L ) ) |
| 20 |
17
|
sdrgss |
|- ( H e. ( SubDRing ` L ) -> H C_ ( Base ` L ) ) |
| 21 |
8 20
|
syl |
|- ( ph -> H C_ ( Base ` L ) ) |
| 22 |
19 21
|
unssd |
|- ( ph -> ( G u. H ) C_ ( Base ` L ) ) |
| 23 |
10
|
a1i |
|- ( ph -> N = ( RingSpan ` L ) ) |
| 24 |
11
|
a1i |
|- ( ph -> C = ( N ` ( G u. H ) ) ) |
| 25 |
15 16 22 23 24
|
rgspncl |
|- ( ph -> C e. ( SubRing ` L ) ) |
| 26 |
4 25
|
subrfld |
|- ( ph -> ( L |`s C ) e. IDomn ) |
| 27 |
12 26
|
eqeltrid |
|- ( ph -> E e. IDomn ) |
| 28 |
27
|
idomcringd |
|- ( ph -> E e. CRing ) |
| 29 |
|
sdrgsubrg |
|- ( G e. ( SubDRing ` L ) -> G e. ( SubRing ` L ) ) |
| 30 |
7 29
|
syl |
|- ( ph -> G e. ( SubRing ` L ) ) |
| 31 |
15 16 22 23 24
|
rgspnssid |
|- ( ph -> ( G u. H ) C_ C ) |
| 32 |
31
|
unssad |
|- ( ph -> G C_ C ) |
| 33 |
12
|
subsubrg |
|- ( C e. ( SubRing ` L ) -> ( G e. ( SubRing ` E ) <-> ( G e. ( SubRing ` L ) /\ G C_ C ) ) ) |
| 34 |
33
|
biimpar |
|- ( ( C e. ( SubRing ` L ) /\ ( G e. ( SubRing ` L ) /\ G C_ C ) ) -> G e. ( SubRing ` E ) ) |
| 35 |
25 30 32 34
|
syl12anc |
|- ( ph -> G e. ( SubRing ` E ) ) |
| 36 |
|
eqid |
|- ( ( subringAlg ` E ) ` G ) = ( ( subringAlg ` E ) ` G ) |
| 37 |
36
|
sraassa |
|- ( ( E e. CRing /\ G e. ( SubRing ` E ) ) -> ( ( subringAlg ` E ) ` G ) e. AssAlg ) |
| 38 |
28 35 37
|
syl2anc |
|- ( ph -> ( ( subringAlg ` E ) ` G ) e. AssAlg ) |
| 39 |
|
eqid |
|- ( Base ` E ) = ( Base ` E ) |
| 40 |
17
|
subrgss |
|- ( C e. ( SubRing ` L ) -> C C_ ( Base ` L ) ) |
| 41 |
25 40
|
syl |
|- ( ph -> C C_ ( Base ` L ) ) |
| 42 |
12 17
|
ressbas2 |
|- ( C C_ ( Base ` L ) -> C = ( Base ` E ) ) |
| 43 |
41 42
|
syl |
|- ( ph -> C = ( Base ` E ) ) |
| 44 |
32 43
|
sseqtrd |
|- ( ph -> G C_ ( Base ` E ) ) |
| 45 |
36 39 27 44
|
sraidom |
|- ( ph -> ( ( subringAlg ` E ) ` G ) e. IDomn ) |
| 46 |
|
ressabs |
|- ( ( C e. ( SubRing ` L ) /\ G C_ C ) -> ( ( L |`s C ) |`s G ) = ( L |`s G ) ) |
| 47 |
25 32 46
|
syl2anc |
|- ( ph -> ( ( L |`s C ) |`s G ) = ( L |`s G ) ) |
| 48 |
12
|
oveq1i |
|- ( E |`s G ) = ( ( L |`s C ) |`s G ) |
| 49 |
47 48 2
|
3eqtr4g |
|- ( ph -> ( E |`s G ) = I ) |
| 50 |
|
eqidd |
|- ( ph -> ( ( subringAlg ` E ) ` G ) = ( ( subringAlg ` E ) ` G ) ) |
| 51 |
50 44
|
srasca |
|- ( ph -> ( E |`s G ) = ( Scalar ` ( ( subringAlg ` E ) ` G ) ) ) |
| 52 |
49 51
|
eqtr3d |
|- ( ph -> I = ( Scalar ` ( ( subringAlg ` E ) ` G ) ) ) |
| 53 |
2
|
sdrgdrng |
|- ( G e. ( SubDRing ` L ) -> I e. DivRing ) |
| 54 |
7 53
|
syl |
|- ( ph -> I e. DivRing ) |
| 55 |
52 54
|
eqeltrrd |
|- ( ph -> ( Scalar ` ( ( subringAlg ` E ) ` G ) ) e. DivRing ) |
| 56 |
36
|
sralmod |
|- ( G e. ( SubRing ` E ) -> ( ( subringAlg ` E ) ` G ) e. LMod ) |
| 57 |
35 56
|
syl |
|- ( ph -> ( ( subringAlg ` E ) ` G ) e. LMod ) |
| 58 |
13
|
islvec |
|- ( ( ( subringAlg ` E ) ` G ) e. LVec <-> ( ( ( subringAlg ` E ) ` G ) e. LMod /\ ( Scalar ` ( ( subringAlg ` E ) ` G ) ) e. DivRing ) ) |
| 59 |
57 55 58
|
sylanbrc |
|- ( ph -> ( ( subringAlg ` E ) ` G ) e. LVec ) |
| 60 |
|
dimcl |
|- ( ( ( subringAlg ` E ) ` G ) e. LVec -> ( dim ` ( ( subringAlg ` E ) ` G ) ) e. NN0* ) |
| 61 |
59 60
|
syl |
|- ( ph -> ( dim ` ( ( subringAlg ` E ) ` G ) ) e. NN0* ) |
| 62 |
1 2 3 4 5 6 7 8 9 10 11 12
|
fldextrspunlem1 |
|- ( ph -> ( dim ` ( ( subringAlg ` E ) ` G ) ) <_ ( J [:] K ) ) |
| 63 |
|
xnn0lenn0nn0 |
|- ( ( ( dim ` ( ( subringAlg ` E ) ` G ) ) e. NN0* /\ ( J [:] K ) e. NN0 /\ ( dim ` ( ( subringAlg ` E ) ` G ) ) <_ ( J [:] K ) ) -> ( dim ` ( ( subringAlg ` E ) ` G ) ) e. NN0 ) |
| 64 |
61 9 62 63
|
syl3anc |
|- ( ph -> ( dim ` ( ( subringAlg ` E ) ` G ) ) e. NN0 ) |
| 65 |
13 38 45 55 64
|
assafld |
|- ( ph -> ( ( subringAlg ` E ) ` G ) e. Field ) |
| 66 |
50 44
|
srabase |
|- ( ph -> ( Base ` E ) = ( Base ` ( ( subringAlg ` E ) ` G ) ) ) |
| 67 |
43 66
|
eqtrd |
|- ( ph -> C = ( Base ` ( ( subringAlg ` E ) ` G ) ) ) |
| 68 |
50 44
|
sraaddg |
|- ( ph -> ( +g ` E ) = ( +g ` ( ( subringAlg ` E ) ` G ) ) ) |
| 69 |
68
|
oveqdr |
|- ( ( ph /\ ( x e. C /\ y e. C ) ) -> ( x ( +g ` E ) y ) = ( x ( +g ` ( ( subringAlg ` E ) ` G ) ) y ) ) |
| 70 |
50 44
|
sramulr |
|- ( ph -> ( .r ` E ) = ( .r ` ( ( subringAlg ` E ) ` G ) ) ) |
| 71 |
70
|
oveqdr |
|- ( ( ph /\ ( x e. C /\ y e. C ) ) -> ( x ( .r ` E ) y ) = ( x ( .r ` ( ( subringAlg ` E ) ` G ) ) y ) ) |
| 72 |
43 67 69 71
|
fldpropd |
|- ( ph -> ( E e. Field <-> ( ( subringAlg ` E ) ` G ) e. Field ) ) |
| 73 |
65 72
|
mpbird |
|- ( ph -> E e. Field ) |