Metamath Proof Explorer


Theorem fldextrspunfld

Description: The ring generated by the union of two field extensions is a field. Part of the proof of Proposition 5, Chapter 5, of BourbakiAlg2 p. 116. (Contributed by Thierry Arnoux, 13-Oct-2025)

Ref Expression
Hypotheses fldextrspunfld.k
|- K = ( L |`s F )
fldextrspunfld.i
|- I = ( L |`s G )
fldextrspunfld.j
|- J = ( L |`s H )
fldextrspunfld.2
|- ( ph -> L e. Field )
fldextrspunfld.3
|- ( ph -> F e. ( SubDRing ` I ) )
fldextrspunfld.4
|- ( ph -> F e. ( SubDRing ` J ) )
fldextrspunfld.5
|- ( ph -> G e. ( SubDRing ` L ) )
fldextrspunfld.6
|- ( ph -> H e. ( SubDRing ` L ) )
fldextrspunfld.7
|- ( ph -> ( J [:] K ) e. NN0 )
fldextrspunfld.n
|- N = ( RingSpan ` L )
fldextrspunfld.c
|- C = ( N ` ( G u. H ) )
fldextrspunfld.e
|- E = ( L |`s C )
Assertion fldextrspunfld
|- ( ph -> E e. Field )

Proof

Step Hyp Ref Expression
1 fldextrspunfld.k
 |-  K = ( L |`s F )
2 fldextrspunfld.i
 |-  I = ( L |`s G )
3 fldextrspunfld.j
 |-  J = ( L |`s H )
4 fldextrspunfld.2
 |-  ( ph -> L e. Field )
5 fldextrspunfld.3
 |-  ( ph -> F e. ( SubDRing ` I ) )
6 fldextrspunfld.4
 |-  ( ph -> F e. ( SubDRing ` J ) )
7 fldextrspunfld.5
 |-  ( ph -> G e. ( SubDRing ` L ) )
8 fldextrspunfld.6
 |-  ( ph -> H e. ( SubDRing ` L ) )
9 fldextrspunfld.7
 |-  ( ph -> ( J [:] K ) e. NN0 )
10 fldextrspunfld.n
 |-  N = ( RingSpan ` L )
11 fldextrspunfld.c
 |-  C = ( N ` ( G u. H ) )
12 fldextrspunfld.e
 |-  E = ( L |`s C )
13 eqid
 |-  ( Scalar ` ( ( subringAlg ` E ) ` G ) ) = ( Scalar ` ( ( subringAlg ` E ) ` G ) )
14 4 flddrngd
 |-  ( ph -> L e. DivRing )
15 14 drngringd
 |-  ( ph -> L e. Ring )
16 eqidd
 |-  ( ph -> ( Base ` L ) = ( Base ` L ) )
17 eqid
 |-  ( Base ` L ) = ( Base ` L )
18 17 sdrgss
 |-  ( G e. ( SubDRing ` L ) -> G C_ ( Base ` L ) )
19 7 18 syl
 |-  ( ph -> G C_ ( Base ` L ) )
20 17 sdrgss
 |-  ( H e. ( SubDRing ` L ) -> H C_ ( Base ` L ) )
21 8 20 syl
 |-  ( ph -> H C_ ( Base ` L ) )
22 19 21 unssd
 |-  ( ph -> ( G u. H ) C_ ( Base ` L ) )
23 10 a1i
 |-  ( ph -> N = ( RingSpan ` L ) )
24 11 a1i
 |-  ( ph -> C = ( N ` ( G u. H ) ) )
25 15 16 22 23 24 rgspncl
 |-  ( ph -> C e. ( SubRing ` L ) )
26 4 25 subrfld
 |-  ( ph -> ( L |`s C ) e. IDomn )
27 12 26 eqeltrid
 |-  ( ph -> E e. IDomn )
28 27 idomcringd
 |-  ( ph -> E e. CRing )
29 sdrgsubrg
 |-  ( G e. ( SubDRing ` L ) -> G e. ( SubRing ` L ) )
30 7 29 syl
 |-  ( ph -> G e. ( SubRing ` L ) )
31 15 16 22 23 24 rgspnssid
 |-  ( ph -> ( G u. H ) C_ C )
32 31 unssad
 |-  ( ph -> G C_ C )
33 12 subsubrg
 |-  ( C e. ( SubRing ` L ) -> ( G e. ( SubRing ` E ) <-> ( G e. ( SubRing ` L ) /\ G C_ C ) ) )
34 33 biimpar
 |-  ( ( C e. ( SubRing ` L ) /\ ( G e. ( SubRing ` L ) /\ G C_ C ) ) -> G e. ( SubRing ` E ) )
35 25 30 32 34 syl12anc
 |-  ( ph -> G e. ( SubRing ` E ) )
36 eqid
 |-  ( ( subringAlg ` E ) ` G ) = ( ( subringAlg ` E ) ` G )
37 36 sraassa
 |-  ( ( E e. CRing /\ G e. ( SubRing ` E ) ) -> ( ( subringAlg ` E ) ` G ) e. AssAlg )
38 28 35 37 syl2anc
 |-  ( ph -> ( ( subringAlg ` E ) ` G ) e. AssAlg )
39 eqid
 |-  ( Base ` E ) = ( Base ` E )
40 17 subrgss
 |-  ( C e. ( SubRing ` L ) -> C C_ ( Base ` L ) )
41 25 40 syl
 |-  ( ph -> C C_ ( Base ` L ) )
42 12 17 ressbas2
 |-  ( C C_ ( Base ` L ) -> C = ( Base ` E ) )
43 41 42 syl
 |-  ( ph -> C = ( Base ` E ) )
44 32 43 sseqtrd
 |-  ( ph -> G C_ ( Base ` E ) )
45 36 39 27 44 sraidom
 |-  ( ph -> ( ( subringAlg ` E ) ` G ) e. IDomn )
46 ressabs
 |-  ( ( C e. ( SubRing ` L ) /\ G C_ C ) -> ( ( L |`s C ) |`s G ) = ( L |`s G ) )
47 25 32 46 syl2anc
 |-  ( ph -> ( ( L |`s C ) |`s G ) = ( L |`s G ) )
48 12 oveq1i
 |-  ( E |`s G ) = ( ( L |`s C ) |`s G )
49 47 48 2 3eqtr4g
 |-  ( ph -> ( E |`s G ) = I )
50 eqidd
 |-  ( ph -> ( ( subringAlg ` E ) ` G ) = ( ( subringAlg ` E ) ` G ) )
51 50 44 srasca
 |-  ( ph -> ( E |`s G ) = ( Scalar ` ( ( subringAlg ` E ) ` G ) ) )
52 49 51 eqtr3d
 |-  ( ph -> I = ( Scalar ` ( ( subringAlg ` E ) ` G ) ) )
53 2 sdrgdrng
 |-  ( G e. ( SubDRing ` L ) -> I e. DivRing )
54 7 53 syl
 |-  ( ph -> I e. DivRing )
55 52 54 eqeltrrd
 |-  ( ph -> ( Scalar ` ( ( subringAlg ` E ) ` G ) ) e. DivRing )
56 36 sralmod
 |-  ( G e. ( SubRing ` E ) -> ( ( subringAlg ` E ) ` G ) e. LMod )
57 35 56 syl
 |-  ( ph -> ( ( subringAlg ` E ) ` G ) e. LMod )
58 13 islvec
 |-  ( ( ( subringAlg ` E ) ` G ) e. LVec <-> ( ( ( subringAlg ` E ) ` G ) e. LMod /\ ( Scalar ` ( ( subringAlg ` E ) ` G ) ) e. DivRing ) )
59 57 55 58 sylanbrc
 |-  ( ph -> ( ( subringAlg ` E ) ` G ) e. LVec )
60 dimcl
 |-  ( ( ( subringAlg ` E ) ` G ) e. LVec -> ( dim ` ( ( subringAlg ` E ) ` G ) ) e. NN0* )
61 59 60 syl
 |-  ( ph -> ( dim ` ( ( subringAlg ` E ) ` G ) ) e. NN0* )
62 1 2 3 4 5 6 7 8 9 10 11 12 fldextrspunlem1
 |-  ( ph -> ( dim ` ( ( subringAlg ` E ) ` G ) ) <_ ( J [:] K ) )
63 xnn0lenn0nn0
 |-  ( ( ( dim ` ( ( subringAlg ` E ) ` G ) ) e. NN0* /\ ( J [:] K ) e. NN0 /\ ( dim ` ( ( subringAlg ` E ) ` G ) ) <_ ( J [:] K ) ) -> ( dim ` ( ( subringAlg ` E ) ` G ) ) e. NN0 )
64 61 9 62 63 syl3anc
 |-  ( ph -> ( dim ` ( ( subringAlg ` E ) ` G ) ) e. NN0 )
65 13 38 45 55 64 assafld
 |-  ( ph -> ( ( subringAlg ` E ) ` G ) e. Field )
66 50 44 srabase
 |-  ( ph -> ( Base ` E ) = ( Base ` ( ( subringAlg ` E ) ` G ) ) )
67 43 66 eqtrd
 |-  ( ph -> C = ( Base ` ( ( subringAlg ` E ) ` G ) ) )
68 50 44 sraaddg
 |-  ( ph -> ( +g ` E ) = ( +g ` ( ( subringAlg ` E ) ` G ) ) )
69 68 oveqdr
 |-  ( ( ph /\ ( x e. C /\ y e. C ) ) -> ( x ( +g ` E ) y ) = ( x ( +g ` ( ( subringAlg ` E ) ` G ) ) y ) )
70 50 44 sramulr
 |-  ( ph -> ( .r ` E ) = ( .r ` ( ( subringAlg ` E ) ` G ) ) )
71 70 oveqdr
 |-  ( ( ph /\ ( x e. C /\ y e. C ) ) -> ( x ( .r ` E ) y ) = ( x ( .r ` ( ( subringAlg ` E ) ` G ) ) y ) )
72 43 67 69 71 fldpropd
 |-  ( ph -> ( E e. Field <-> ( ( subringAlg ` E ) ` G ) e. Field ) )
73 65 72 mpbird
 |-  ( ph -> E e. Field )