| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fldextrspunfld.k |
|- K = ( L |`s F ) |
| 2 |
|
fldextrspunfld.i |
|- I = ( L |`s G ) |
| 3 |
|
fldextrspunfld.j |
|- J = ( L |`s H ) |
| 4 |
|
fldextrspunfld.2 |
|- ( ph -> L e. Field ) |
| 5 |
|
fldextrspunfld.3 |
|- ( ph -> F e. ( SubDRing ` I ) ) |
| 6 |
|
fldextrspunfld.4 |
|- ( ph -> F e. ( SubDRing ` J ) ) |
| 7 |
|
fldextrspunfld.5 |
|- ( ph -> G e. ( SubDRing ` L ) ) |
| 8 |
|
fldextrspunfld.6 |
|- ( ph -> H e. ( SubDRing ` L ) ) |
| 9 |
|
fldextrspunfld.7 |
|- ( ph -> ( J [:] K ) e. NN0 ) |
| 10 |
|
fldextrspunfld.n |
|- N = ( RingSpan ` L ) |
| 11 |
|
fldextrspunfld.c |
|- C = ( N ` ( G u. H ) ) |
| 12 |
|
fldextrspunfld.e |
|- E = ( L |`s C ) |
| 13 |
3
|
sdrgdrng |
|- ( H e. ( SubDRing ` L ) -> J e. DivRing ) |
| 14 |
8 13
|
syl |
|- ( ph -> J e. DivRing ) |
| 15 |
|
eqid |
|- ( J |`s F ) = ( J |`s F ) |
| 16 |
15
|
sdrgdrng |
|- ( F e. ( SubDRing ` J ) -> ( J |`s F ) e. DivRing ) |
| 17 |
6 16
|
syl |
|- ( ph -> ( J |`s F ) e. DivRing ) |
| 18 |
|
sdrgsubrg |
|- ( H e. ( SubDRing ` L ) -> H e. ( SubRing ` L ) ) |
| 19 |
8 18
|
syl |
|- ( ph -> H e. ( SubRing ` L ) ) |
| 20 |
|
sdrgsubrg |
|- ( G e. ( SubDRing ` L ) -> G e. ( SubRing ` L ) ) |
| 21 |
7 20
|
syl |
|- ( ph -> G e. ( SubRing ` L ) ) |
| 22 |
|
sdrgsubrg |
|- ( F e. ( SubDRing ` I ) -> F e. ( SubRing ` I ) ) |
| 23 |
5 22
|
syl |
|- ( ph -> F e. ( SubRing ` I ) ) |
| 24 |
2
|
subsubrg |
|- ( G e. ( SubRing ` L ) -> ( F e. ( SubRing ` I ) <-> ( F e. ( SubRing ` L ) /\ F C_ G ) ) ) |
| 25 |
24
|
biimpa |
|- ( ( G e. ( SubRing ` L ) /\ F e. ( SubRing ` I ) ) -> ( F e. ( SubRing ` L ) /\ F C_ G ) ) |
| 26 |
21 23 25
|
syl2anc |
|- ( ph -> ( F e. ( SubRing ` L ) /\ F C_ G ) ) |
| 27 |
26
|
simpld |
|- ( ph -> F e. ( SubRing ` L ) ) |
| 28 |
|
eqid |
|- ( Base ` J ) = ( Base ` J ) |
| 29 |
28
|
sdrgss |
|- ( F e. ( SubDRing ` J ) -> F C_ ( Base ` J ) ) |
| 30 |
6 29
|
syl |
|- ( ph -> F C_ ( Base ` J ) ) |
| 31 |
|
eqid |
|- ( Base ` L ) = ( Base ` L ) |
| 32 |
31
|
sdrgss |
|- ( H e. ( SubDRing ` L ) -> H C_ ( Base ` L ) ) |
| 33 |
8 32
|
syl |
|- ( ph -> H C_ ( Base ` L ) ) |
| 34 |
3 31
|
ressbas2 |
|- ( H C_ ( Base ` L ) -> H = ( Base ` J ) ) |
| 35 |
33 34
|
syl |
|- ( ph -> H = ( Base ` J ) ) |
| 36 |
30 35
|
sseqtrrd |
|- ( ph -> F C_ H ) |
| 37 |
3
|
subsubrg |
|- ( H e. ( SubRing ` L ) -> ( F e. ( SubRing ` J ) <-> ( F e. ( SubRing ` L ) /\ F C_ H ) ) ) |
| 38 |
37
|
biimpar |
|- ( ( H e. ( SubRing ` L ) /\ ( F e. ( SubRing ` L ) /\ F C_ H ) ) -> F e. ( SubRing ` J ) ) |
| 39 |
19 27 36 38
|
syl12anc |
|- ( ph -> F e. ( SubRing ` J ) ) |
| 40 |
|
eqid |
|- ( ( subringAlg ` J ) ` F ) = ( ( subringAlg ` J ) ` F ) |
| 41 |
40 15
|
sralvec |
|- ( ( J e. DivRing /\ ( J |`s F ) e. DivRing /\ F e. ( SubRing ` J ) ) -> ( ( subringAlg ` J ) ` F ) e. LVec ) |
| 42 |
14 17 39 41
|
syl3anc |
|- ( ph -> ( ( subringAlg ` J ) ` F ) e. LVec ) |
| 43 |
|
eqid |
|- ( LBasis ` ( ( subringAlg ` J ) ` F ) ) = ( LBasis ` ( ( subringAlg ` J ) ` F ) ) |
| 44 |
43
|
lbsex |
|- ( ( ( subringAlg ` J ) ` F ) e. LVec -> ( LBasis ` ( ( subringAlg ` J ) ` F ) ) =/= (/) ) |
| 45 |
42 44
|
syl |
|- ( ph -> ( LBasis ` ( ( subringAlg ` J ) ` F ) ) =/= (/) ) |
| 46 |
|
fldidom |
|- ( L e. Field -> L e. IDomn ) |
| 47 |
4 46
|
syl |
|- ( ph -> L e. IDomn ) |
| 48 |
47
|
idomringd |
|- ( ph -> L e. Ring ) |
| 49 |
|
eqidd |
|- ( ph -> ( Base ` L ) = ( Base ` L ) ) |
| 50 |
31
|
sdrgss |
|- ( G e. ( SubDRing ` L ) -> G C_ ( Base ` L ) ) |
| 51 |
7 50
|
syl |
|- ( ph -> G C_ ( Base ` L ) ) |
| 52 |
51 33
|
unssd |
|- ( ph -> ( G u. H ) C_ ( Base ` L ) ) |
| 53 |
10
|
a1i |
|- ( ph -> N = ( RingSpan ` L ) ) |
| 54 |
11
|
a1i |
|- ( ph -> C = ( N ` ( G u. H ) ) ) |
| 55 |
48 49 52 53 54
|
rgspncl |
|- ( ph -> C e. ( SubRing ` L ) ) |
| 56 |
48 49 52 53 54
|
rgspnssid |
|- ( ph -> ( G u. H ) C_ C ) |
| 57 |
56
|
unssad |
|- ( ph -> G C_ C ) |
| 58 |
12
|
subsubrg |
|- ( C e. ( SubRing ` L ) -> ( G e. ( SubRing ` E ) <-> ( G e. ( SubRing ` L ) /\ G C_ C ) ) ) |
| 59 |
58
|
biimpar |
|- ( ( C e. ( SubRing ` L ) /\ ( G e. ( SubRing ` L ) /\ G C_ C ) ) -> G e. ( SubRing ` E ) ) |
| 60 |
55 21 57 59
|
syl12anc |
|- ( ph -> G e. ( SubRing ` E ) ) |
| 61 |
|
eqid |
|- ( ( subringAlg ` E ) ` G ) = ( ( subringAlg ` E ) ` G ) |
| 62 |
61
|
sralmod |
|- ( G e. ( SubRing ` E ) -> ( ( subringAlg ` E ) ` G ) e. LMod ) |
| 63 |
60 62
|
syl |
|- ( ph -> ( ( subringAlg ` E ) ` G ) e. LMod ) |
| 64 |
|
ressabs |
|- ( ( C e. ( SubRing ` L ) /\ G C_ C ) -> ( ( L |`s C ) |`s G ) = ( L |`s G ) ) |
| 65 |
55 57 64
|
syl2anc |
|- ( ph -> ( ( L |`s C ) |`s G ) = ( L |`s G ) ) |
| 66 |
12
|
oveq1i |
|- ( E |`s G ) = ( ( L |`s C ) |`s G ) |
| 67 |
65 66 2
|
3eqtr4g |
|- ( ph -> ( E |`s G ) = I ) |
| 68 |
|
eqidd |
|- ( ph -> ( ( subringAlg ` E ) ` G ) = ( ( subringAlg ` E ) ` G ) ) |
| 69 |
31
|
subrgss |
|- ( C e. ( SubRing ` L ) -> C C_ ( Base ` L ) ) |
| 70 |
55 69
|
syl |
|- ( ph -> C C_ ( Base ` L ) ) |
| 71 |
12 31
|
ressbas2 |
|- ( C C_ ( Base ` L ) -> C = ( Base ` E ) ) |
| 72 |
70 71
|
syl |
|- ( ph -> C = ( Base ` E ) ) |
| 73 |
56 72
|
sseqtrd |
|- ( ph -> ( G u. H ) C_ ( Base ` E ) ) |
| 74 |
73
|
unssad |
|- ( ph -> G C_ ( Base ` E ) ) |
| 75 |
68 74
|
srasca |
|- ( ph -> ( E |`s G ) = ( Scalar ` ( ( subringAlg ` E ) ` G ) ) ) |
| 76 |
67 75
|
eqtr3d |
|- ( ph -> I = ( Scalar ` ( ( subringAlg ` E ) ` G ) ) ) |
| 77 |
2
|
sdrgdrng |
|- ( G e. ( SubDRing ` L ) -> I e. DivRing ) |
| 78 |
7 77
|
syl |
|- ( ph -> I e. DivRing ) |
| 79 |
76 78
|
eqeltrrd |
|- ( ph -> ( Scalar ` ( ( subringAlg ` E ) ` G ) ) e. DivRing ) |
| 80 |
|
eqid |
|- ( Scalar ` ( ( subringAlg ` E ) ` G ) ) = ( Scalar ` ( ( subringAlg ` E ) ` G ) ) |
| 81 |
80
|
islvec |
|- ( ( ( subringAlg ` E ) ` G ) e. LVec <-> ( ( ( subringAlg ` E ) ` G ) e. LMod /\ ( Scalar ` ( ( subringAlg ` E ) ` G ) ) e. DivRing ) ) |
| 82 |
63 79 81
|
sylanbrc |
|- ( ph -> ( ( subringAlg ` E ) ` G ) e. LVec ) |
| 83 |
|
eqid |
|- ( LBasis ` ( ( subringAlg ` E ) ` G ) ) = ( LBasis ` ( ( subringAlg ` E ) ` G ) ) |
| 84 |
83
|
lbsex |
|- ( ( ( subringAlg ` E ) ` G ) e. LVec -> ( LBasis ` ( ( subringAlg ` E ) ` G ) ) =/= (/) ) |
| 85 |
82 84
|
syl |
|- ( ph -> ( LBasis ` ( ( subringAlg ` E ) ` G ) ) =/= (/) ) |
| 86 |
85
|
adantr |
|- ( ( ph /\ b e. ( LBasis ` ( ( subringAlg ` J ) ` F ) ) ) -> ( LBasis ` ( ( subringAlg ` E ) ` G ) ) =/= (/) ) |
| 87 |
82
|
ad2antrr |
|- ( ( ( ph /\ b e. ( LBasis ` ( ( subringAlg ` J ) ` F ) ) ) /\ c e. ( LBasis ` ( ( subringAlg ` E ) ` G ) ) ) -> ( ( subringAlg ` E ) ` G ) e. LVec ) |
| 88 |
|
simpr |
|- ( ( ( ph /\ b e. ( LBasis ` ( ( subringAlg ` J ) ` F ) ) ) /\ c e. ( LBasis ` ( ( subringAlg ` E ) ` G ) ) ) -> c e. ( LBasis ` ( ( subringAlg ` E ) ` G ) ) ) |
| 89 |
83
|
dimval |
|- ( ( ( ( subringAlg ` E ) ` G ) e. LVec /\ c e. ( LBasis ` ( ( subringAlg ` E ) ` G ) ) ) -> ( dim ` ( ( subringAlg ` E ) ` G ) ) = ( # ` c ) ) |
| 90 |
87 88 89
|
syl2anc |
|- ( ( ( ph /\ b e. ( LBasis ` ( ( subringAlg ` J ) ` F ) ) ) /\ c e. ( LBasis ` ( ( subringAlg ` E ) ` G ) ) ) -> ( dim ` ( ( subringAlg ` E ) ` G ) ) = ( # ` c ) ) |
| 91 |
|
eqid |
|- ( Base ` ( ( subringAlg ` E ) ` G ) ) = ( Base ` ( ( subringAlg ` E ) ` G ) ) |
| 92 |
|
eqid |
|- ( LSpan ` ( ( subringAlg ` E ) ` G ) ) = ( LSpan ` ( ( subringAlg ` E ) ` G ) ) |
| 93 |
|
eqid |
|- ( Base ` ( ( subringAlg ` J ) ` F ) ) = ( Base ` ( ( subringAlg ` J ) ` F ) ) |
| 94 |
93 43
|
lbsss |
|- ( b e. ( LBasis ` ( ( subringAlg ` J ) ` F ) ) -> b C_ ( Base ` ( ( subringAlg ` J ) ` F ) ) ) |
| 95 |
94
|
ad2antlr |
|- ( ( ( ph /\ b e. ( LBasis ` ( ( subringAlg ` J ) ` F ) ) ) /\ c e. ( LBasis ` ( ( subringAlg ` E ) ` G ) ) ) -> b C_ ( Base ` ( ( subringAlg ` J ) ` F ) ) ) |
| 96 |
|
eqidd |
|- ( ph -> ( ( subringAlg ` J ) ` F ) = ( ( subringAlg ` J ) ` F ) ) |
| 97 |
96 30
|
srabase |
|- ( ph -> ( Base ` J ) = ( Base ` ( ( subringAlg ` J ) ` F ) ) ) |
| 98 |
35 97
|
eqtrd |
|- ( ph -> H = ( Base ` ( ( subringAlg ` J ) ` F ) ) ) |
| 99 |
98
|
ad2antrr |
|- ( ( ( ph /\ b e. ( LBasis ` ( ( subringAlg ` J ) ` F ) ) ) /\ c e. ( LBasis ` ( ( subringAlg ` E ) ` G ) ) ) -> H = ( Base ` ( ( subringAlg ` J ) ` F ) ) ) |
| 100 |
95 99
|
sseqtrrd |
|- ( ( ( ph /\ b e. ( LBasis ` ( ( subringAlg ` J ) ` F ) ) ) /\ c e. ( LBasis ` ( ( subringAlg ` E ) ` G ) ) ) -> b C_ H ) |
| 101 |
56
|
unssbd |
|- ( ph -> H C_ C ) |
| 102 |
101
|
ad2antrr |
|- ( ( ( ph /\ b e. ( LBasis ` ( ( subringAlg ` J ) ` F ) ) ) /\ c e. ( LBasis ` ( ( subringAlg ` E ) ` G ) ) ) -> H C_ C ) |
| 103 |
100 102
|
sstrd |
|- ( ( ( ph /\ b e. ( LBasis ` ( ( subringAlg ` J ) ` F ) ) ) /\ c e. ( LBasis ` ( ( subringAlg ` E ) ` G ) ) ) -> b C_ C ) |
| 104 |
72
|
ad2antrr |
|- ( ( ( ph /\ b e. ( LBasis ` ( ( subringAlg ` J ) ` F ) ) ) /\ c e. ( LBasis ` ( ( subringAlg ` E ) ` G ) ) ) -> C = ( Base ` E ) ) |
| 105 |
103 104
|
sseqtrd |
|- ( ( ( ph /\ b e. ( LBasis ` ( ( subringAlg ` J ) ` F ) ) ) /\ c e. ( LBasis ` ( ( subringAlg ` E ) ` G ) ) ) -> b C_ ( Base ` E ) ) |
| 106 |
|
eqidd |
|- ( ( ( ph /\ b e. ( LBasis ` ( ( subringAlg ` J ) ` F ) ) ) /\ c e. ( LBasis ` ( ( subringAlg ` E ) ` G ) ) ) -> ( ( subringAlg ` E ) ` G ) = ( ( subringAlg ` E ) ` G ) ) |
| 107 |
74
|
ad2antrr |
|- ( ( ( ph /\ b e. ( LBasis ` ( ( subringAlg ` J ) ` F ) ) ) /\ c e. ( LBasis ` ( ( subringAlg ` E ) ` G ) ) ) -> G C_ ( Base ` E ) ) |
| 108 |
106 107
|
srabase |
|- ( ( ( ph /\ b e. ( LBasis ` ( ( subringAlg ` J ) ` F ) ) ) /\ c e. ( LBasis ` ( ( subringAlg ` E ) ` G ) ) ) -> ( Base ` E ) = ( Base ` ( ( subringAlg ` E ) ` G ) ) ) |
| 109 |
105 108
|
sseqtrd |
|- ( ( ( ph /\ b e. ( LBasis ` ( ( subringAlg ` J ) ` F ) ) ) /\ c e. ( LBasis ` ( ( subringAlg ` E ) ` G ) ) ) -> b C_ ( Base ` ( ( subringAlg ` E ) ` G ) ) ) |
| 110 |
63
|
ad2antrr |
|- ( ( ( ph /\ b e. ( LBasis ` ( ( subringAlg ` J ) ` F ) ) ) /\ c e. ( LBasis ` ( ( subringAlg ` E ) ` G ) ) ) -> ( ( subringAlg ` E ) ` G ) e. LMod ) |
| 111 |
91 92
|
lspssv |
|- ( ( ( ( subringAlg ` E ) ` G ) e. LMod /\ b C_ ( Base ` ( ( subringAlg ` E ) ` G ) ) ) -> ( ( LSpan ` ( ( subringAlg ` E ) ` G ) ) ` b ) C_ ( Base ` ( ( subringAlg ` E ) ` G ) ) ) |
| 112 |
110 109 111
|
syl2anc |
|- ( ( ( ph /\ b e. ( LBasis ` ( ( subringAlg ` J ) ` F ) ) ) /\ c e. ( LBasis ` ( ( subringAlg ` E ) ` G ) ) ) -> ( ( LSpan ` ( ( subringAlg ` E ) ` G ) ) ` b ) C_ ( Base ` ( ( subringAlg ` E ) ` G ) ) ) |
| 113 |
4
|
adantr |
|- ( ( ph /\ b e. ( LBasis ` ( ( subringAlg ` J ) ` F ) ) ) -> L e. Field ) |
| 114 |
5
|
adantr |
|- ( ( ph /\ b e. ( LBasis ` ( ( subringAlg ` J ) ` F ) ) ) -> F e. ( SubDRing ` I ) ) |
| 115 |
6
|
adantr |
|- ( ( ph /\ b e. ( LBasis ` ( ( subringAlg ` J ) ` F ) ) ) -> F e. ( SubDRing ` J ) ) |
| 116 |
7
|
adantr |
|- ( ( ph /\ b e. ( LBasis ` ( ( subringAlg ` J ) ` F ) ) ) -> G e. ( SubDRing ` L ) ) |
| 117 |
8
|
adantr |
|- ( ( ph /\ b e. ( LBasis ` ( ( subringAlg ` J ) ` F ) ) ) -> H e. ( SubDRing ` L ) ) |
| 118 |
|
simpr |
|- ( ( ph /\ b e. ( LBasis ` ( ( subringAlg ` J ) ` F ) ) ) -> b e. ( LBasis ` ( ( subringAlg ` J ) ` F ) ) ) |
| 119 |
|
fldsdrgfld |
|- ( ( L e. Field /\ H e. ( SubDRing ` L ) ) -> ( L |`s H ) e. Field ) |
| 120 |
4 8 119
|
syl2anc |
|- ( ph -> ( L |`s H ) e. Field ) |
| 121 |
3 120
|
eqeltrid |
|- ( ph -> J e. Field ) |
| 122 |
|
ressabs |
|- ( ( H e. ( SubDRing ` L ) /\ F C_ H ) -> ( ( L |`s H ) |`s F ) = ( L |`s F ) ) |
| 123 |
8 36 122
|
syl2anc |
|- ( ph -> ( ( L |`s H ) |`s F ) = ( L |`s F ) ) |
| 124 |
3
|
oveq1i |
|- ( J |`s F ) = ( ( L |`s H ) |`s F ) |
| 125 |
123 124 1
|
3eqtr4g |
|- ( ph -> ( J |`s F ) = K ) |
| 126 |
|
fldsdrgfld |
|- ( ( J e. Field /\ F e. ( SubDRing ` J ) ) -> ( J |`s F ) e. Field ) |
| 127 |
121 6 126
|
syl2anc |
|- ( ph -> ( J |`s F ) e. Field ) |
| 128 |
125 127
|
eqeltrrd |
|- ( ph -> K e. Field ) |
| 129 |
36 33
|
sstrd |
|- ( ph -> F C_ ( Base ` L ) ) |
| 130 |
1 31
|
ressbas2 |
|- ( F C_ ( Base ` L ) -> F = ( Base ` K ) ) |
| 131 |
129 130
|
syl |
|- ( ph -> F = ( Base ` K ) ) |
| 132 |
131
|
oveq2d |
|- ( ph -> ( J |`s F ) = ( J |`s ( Base ` K ) ) ) |
| 133 |
125 132
|
eqtr3d |
|- ( ph -> K = ( J |`s ( Base ` K ) ) ) |
| 134 |
131 39
|
eqeltrrd |
|- ( ph -> ( Base ` K ) e. ( SubRing ` J ) ) |
| 135 |
|
brfldext |
|- ( ( J e. Field /\ K e. Field ) -> ( J /FldExt K <-> ( K = ( J |`s ( Base ` K ) ) /\ ( Base ` K ) e. ( SubRing ` J ) ) ) ) |
| 136 |
135
|
biimpar |
|- ( ( ( J e. Field /\ K e. Field ) /\ ( K = ( J |`s ( Base ` K ) ) /\ ( Base ` K ) e. ( SubRing ` J ) ) ) -> J /FldExt K ) |
| 137 |
121 128 133 134 136
|
syl22anc |
|- ( ph -> J /FldExt K ) |
| 138 |
137
|
adantr |
|- ( ( ph /\ b e. ( LBasis ` ( ( subringAlg ` J ) ` F ) ) ) -> J /FldExt K ) |
| 139 |
|
extdgval |
|- ( J /FldExt K -> ( J [:] K ) = ( dim ` ( ( subringAlg ` J ) ` ( Base ` K ) ) ) ) |
| 140 |
138 139
|
syl |
|- ( ( ph /\ b e. ( LBasis ` ( ( subringAlg ` J ) ` F ) ) ) -> ( J [:] K ) = ( dim ` ( ( subringAlg ` J ) ` ( Base ` K ) ) ) ) |
| 141 |
131
|
fveq2d |
|- ( ph -> ( ( subringAlg ` J ) ` F ) = ( ( subringAlg ` J ) ` ( Base ` K ) ) ) |
| 142 |
141
|
fveq2d |
|- ( ph -> ( dim ` ( ( subringAlg ` J ) ` F ) ) = ( dim ` ( ( subringAlg ` J ) ` ( Base ` K ) ) ) ) |
| 143 |
142
|
adantr |
|- ( ( ph /\ b e. ( LBasis ` ( ( subringAlg ` J ) ` F ) ) ) -> ( dim ` ( ( subringAlg ` J ) ` F ) ) = ( dim ` ( ( subringAlg ` J ) ` ( Base ` K ) ) ) ) |
| 144 |
43
|
dimval |
|- ( ( ( ( subringAlg ` J ) ` F ) e. LVec /\ b e. ( LBasis ` ( ( subringAlg ` J ) ` F ) ) ) -> ( dim ` ( ( subringAlg ` J ) ` F ) ) = ( # ` b ) ) |
| 145 |
42 144
|
sylan |
|- ( ( ph /\ b e. ( LBasis ` ( ( subringAlg ` J ) ` F ) ) ) -> ( dim ` ( ( subringAlg ` J ) ` F ) ) = ( # ` b ) ) |
| 146 |
140 143 145
|
3eqtr2d |
|- ( ( ph /\ b e. ( LBasis ` ( ( subringAlg ` J ) ` F ) ) ) -> ( J [:] K ) = ( # ` b ) ) |
| 147 |
9
|
adantr |
|- ( ( ph /\ b e. ( LBasis ` ( ( subringAlg ` J ) ` F ) ) ) -> ( J [:] K ) e. NN0 ) |
| 148 |
146 147
|
eqeltrrd |
|- ( ( ph /\ b e. ( LBasis ` ( ( subringAlg ` J ) ` F ) ) ) -> ( # ` b ) e. NN0 ) |
| 149 |
|
hashclb |
|- ( b e. ( LBasis ` ( ( subringAlg ` J ) ` F ) ) -> ( b e. Fin <-> ( # ` b ) e. NN0 ) ) |
| 150 |
149
|
biimpar |
|- ( ( b e. ( LBasis ` ( ( subringAlg ` J ) ` F ) ) /\ ( # ` b ) e. NN0 ) -> b e. Fin ) |
| 151 |
118 148 150
|
syl2anc |
|- ( ( ph /\ b e. ( LBasis ` ( ( subringAlg ` J ) ` F ) ) ) -> b e. Fin ) |
| 152 |
1 2 3 113 114 115 116 117 10 11 12 118 151
|
fldextrspunlsp |
|- ( ( ph /\ b e. ( LBasis ` ( ( subringAlg ` J ) ` F ) ) ) -> C = ( ( LSpan ` ( ( subringAlg ` L ) ` G ) ) ` b ) ) |
| 153 |
152
|
eqimssd |
|- ( ( ph /\ b e. ( LBasis ` ( ( subringAlg ` J ) ` F ) ) ) -> C C_ ( ( LSpan ` ( ( subringAlg ` L ) ` G ) ) ` b ) ) |
| 154 |
31 12 70 57 4
|
resssra |
|- ( ph -> ( ( subringAlg ` E ) ` G ) = ( ( ( subringAlg ` L ) ` G ) |`s C ) ) |
| 155 |
154
|
fveq2d |
|- ( ph -> ( LSpan ` ( ( subringAlg ` E ) ` G ) ) = ( LSpan ` ( ( ( subringAlg ` L ) ` G ) |`s C ) ) ) |
| 156 |
155
|
adantr |
|- ( ( ph /\ b e. ( LBasis ` ( ( subringAlg ` J ) ` F ) ) ) -> ( LSpan ` ( ( subringAlg ` E ) ` G ) ) = ( LSpan ` ( ( ( subringAlg ` L ) ` G ) |`s C ) ) ) |
| 157 |
156
|
fveq1d |
|- ( ( ph /\ b e. ( LBasis ` ( ( subringAlg ` J ) ` F ) ) ) -> ( ( LSpan ` ( ( subringAlg ` E ) ` G ) ) ` b ) = ( ( LSpan ` ( ( ( subringAlg ` L ) ` G ) |`s C ) ) ` b ) ) |
| 158 |
116 20
|
syl |
|- ( ( ph /\ b e. ( LBasis ` ( ( subringAlg ` J ) ` F ) ) ) -> G e. ( SubRing ` L ) ) |
| 159 |
|
eqid |
|- ( ( subringAlg ` L ) ` G ) = ( ( subringAlg ` L ) ` G ) |
| 160 |
159
|
sralmod |
|- ( G e. ( SubRing ` L ) -> ( ( subringAlg ` L ) ` G ) e. LMod ) |
| 161 |
158 160
|
syl |
|- ( ( ph /\ b e. ( LBasis ` ( ( subringAlg ` J ) ` F ) ) ) -> ( ( subringAlg ` L ) ` G ) e. LMod ) |
| 162 |
118 94
|
syl |
|- ( ( ph /\ b e. ( LBasis ` ( ( subringAlg ` J ) ` F ) ) ) -> b C_ ( Base ` ( ( subringAlg ` J ) ` F ) ) ) |
| 163 |
98
|
adantr |
|- ( ( ph /\ b e. ( LBasis ` ( ( subringAlg ` J ) ` F ) ) ) -> H = ( Base ` ( ( subringAlg ` J ) ` F ) ) ) |
| 164 |
162 163
|
sseqtrrd |
|- ( ( ph /\ b e. ( LBasis ` ( ( subringAlg ` J ) ` F ) ) ) -> b C_ H ) |
| 165 |
117 32
|
syl |
|- ( ( ph /\ b e. ( LBasis ` ( ( subringAlg ` J ) ` F ) ) ) -> H C_ ( Base ` L ) ) |
| 166 |
164 165
|
sstrd |
|- ( ( ph /\ b e. ( LBasis ` ( ( subringAlg ` J ) ` F ) ) ) -> b C_ ( Base ` L ) ) |
| 167 |
|
eqidd |
|- ( ph -> ( ( subringAlg ` L ) ` G ) = ( ( subringAlg ` L ) ` G ) ) |
| 168 |
167 51
|
srabase |
|- ( ph -> ( Base ` L ) = ( Base ` ( ( subringAlg ` L ) ` G ) ) ) |
| 169 |
168
|
adantr |
|- ( ( ph /\ b e. ( LBasis ` ( ( subringAlg ` J ) ` F ) ) ) -> ( Base ` L ) = ( Base ` ( ( subringAlg ` L ) ` G ) ) ) |
| 170 |
166 169
|
sseqtrd |
|- ( ( ph /\ b e. ( LBasis ` ( ( subringAlg ` J ) ` F ) ) ) -> b C_ ( Base ` ( ( subringAlg ` L ) ` G ) ) ) |
| 171 |
|
eqid |
|- ( Base ` ( ( subringAlg ` L ) ` G ) ) = ( Base ` ( ( subringAlg ` L ) ` G ) ) |
| 172 |
|
eqid |
|- ( LSubSp ` ( ( subringAlg ` L ) ` G ) ) = ( LSubSp ` ( ( subringAlg ` L ) ` G ) ) |
| 173 |
|
eqid |
|- ( LSpan ` ( ( subringAlg ` L ) ` G ) ) = ( LSpan ` ( ( subringAlg ` L ) ` G ) ) |
| 174 |
171 172 173
|
lspcl |
|- ( ( ( ( subringAlg ` L ) ` G ) e. LMod /\ b C_ ( Base ` ( ( subringAlg ` L ) ` G ) ) ) -> ( ( LSpan ` ( ( subringAlg ` L ) ` G ) ) ` b ) e. ( LSubSp ` ( ( subringAlg ` L ) ` G ) ) ) |
| 175 |
161 170 174
|
syl2anc |
|- ( ( ph /\ b e. ( LBasis ` ( ( subringAlg ` J ) ` F ) ) ) -> ( ( LSpan ` ( ( subringAlg ` L ) ` G ) ) ` b ) e. ( LSubSp ` ( ( subringAlg ` L ) ` G ) ) ) |
| 176 |
152 175
|
eqeltrd |
|- ( ( ph /\ b e. ( LBasis ` ( ( subringAlg ` J ) ` F ) ) ) -> C e. ( LSubSp ` ( ( subringAlg ` L ) ` G ) ) ) |
| 177 |
101
|
adantr |
|- ( ( ph /\ b e. ( LBasis ` ( ( subringAlg ` J ) ` F ) ) ) -> H C_ C ) |
| 178 |
164 177
|
sstrd |
|- ( ( ph /\ b e. ( LBasis ` ( ( subringAlg ` J ) ` F ) ) ) -> b C_ C ) |
| 179 |
|
eqid |
|- ( ( ( subringAlg ` L ) ` G ) |`s C ) = ( ( ( subringAlg ` L ) ` G ) |`s C ) |
| 180 |
|
eqid |
|- ( LSpan ` ( ( ( subringAlg ` L ) ` G ) |`s C ) ) = ( LSpan ` ( ( ( subringAlg ` L ) ` G ) |`s C ) ) |
| 181 |
179 173 180 172
|
lsslsp |
|- ( ( ( ( subringAlg ` L ) ` G ) e. LMod /\ C e. ( LSubSp ` ( ( subringAlg ` L ) ` G ) ) /\ b C_ C ) -> ( ( LSpan ` ( ( ( subringAlg ` L ) ` G ) |`s C ) ) ` b ) = ( ( LSpan ` ( ( subringAlg ` L ) ` G ) ) ` b ) ) |
| 182 |
161 176 178 181
|
syl3anc |
|- ( ( ph /\ b e. ( LBasis ` ( ( subringAlg ` J ) ` F ) ) ) -> ( ( LSpan ` ( ( ( subringAlg ` L ) ` G ) |`s C ) ) ` b ) = ( ( LSpan ` ( ( subringAlg ` L ) ` G ) ) ` b ) ) |
| 183 |
157 182
|
eqtr2d |
|- ( ( ph /\ b e. ( LBasis ` ( ( subringAlg ` J ) ` F ) ) ) -> ( ( LSpan ` ( ( subringAlg ` L ) ` G ) ) ` b ) = ( ( LSpan ` ( ( subringAlg ` E ) ` G ) ) ` b ) ) |
| 184 |
153 183
|
sseqtrd |
|- ( ( ph /\ b e. ( LBasis ` ( ( subringAlg ` J ) ` F ) ) ) -> C C_ ( ( LSpan ` ( ( subringAlg ` E ) ` G ) ) ` b ) ) |
| 185 |
184
|
adantr |
|- ( ( ( ph /\ b e. ( LBasis ` ( ( subringAlg ` J ) ` F ) ) ) /\ c e. ( LBasis ` ( ( subringAlg ` E ) ` G ) ) ) -> C C_ ( ( LSpan ` ( ( subringAlg ` E ) ` G ) ) ` b ) ) |
| 186 |
104 185
|
eqsstrrd |
|- ( ( ( ph /\ b e. ( LBasis ` ( ( subringAlg ` J ) ` F ) ) ) /\ c e. ( LBasis ` ( ( subringAlg ` E ) ` G ) ) ) -> ( Base ` E ) C_ ( ( LSpan ` ( ( subringAlg ` E ) ` G ) ) ` b ) ) |
| 187 |
108 186
|
eqsstrrd |
|- ( ( ( ph /\ b e. ( LBasis ` ( ( subringAlg ` J ) ` F ) ) ) /\ c e. ( LBasis ` ( ( subringAlg ` E ) ` G ) ) ) -> ( Base ` ( ( subringAlg ` E ) ` G ) ) C_ ( ( LSpan ` ( ( subringAlg ` E ) ` G ) ) ` b ) ) |
| 188 |
112 187
|
eqssd |
|- ( ( ( ph /\ b e. ( LBasis ` ( ( subringAlg ` J ) ` F ) ) ) /\ c e. ( LBasis ` ( ( subringAlg ` E ) ` G ) ) ) -> ( ( LSpan ` ( ( subringAlg ` E ) ` G ) ) ` b ) = ( Base ` ( ( subringAlg ` E ) ` G ) ) ) |
| 189 |
91 83 92 87 88 109 188
|
lbslelsp |
|- ( ( ( ph /\ b e. ( LBasis ` ( ( subringAlg ` J ) ` F ) ) ) /\ c e. ( LBasis ` ( ( subringAlg ` E ) ` G ) ) ) -> ( # ` c ) <_ ( # ` b ) ) |
| 190 |
90 189
|
eqbrtrd |
|- ( ( ( ph /\ b e. ( LBasis ` ( ( subringAlg ` J ) ` F ) ) ) /\ c e. ( LBasis ` ( ( subringAlg ` E ) ` G ) ) ) -> ( dim ` ( ( subringAlg ` E ) ` G ) ) <_ ( # ` b ) ) |
| 191 |
86 190
|
n0limd |
|- ( ( ph /\ b e. ( LBasis ` ( ( subringAlg ` J ) ` F ) ) ) -> ( dim ` ( ( subringAlg ` E ) ` G ) ) <_ ( # ` b ) ) |
| 192 |
191 146
|
breqtrrd |
|- ( ( ph /\ b e. ( LBasis ` ( ( subringAlg ` J ) ` F ) ) ) -> ( dim ` ( ( subringAlg ` E ) ` G ) ) <_ ( J [:] K ) ) |
| 193 |
45 192
|
n0limd |
|- ( ph -> ( dim ` ( ( subringAlg ` E ) ` G ) ) <_ ( J [:] K ) ) |