Metamath Proof Explorer


Theorem fldextrspunlem1

Description: Lemma for fldextrspunfld . Part of the proof of Proposition 5, Chapter 5, of BourbakiAlg2 p. 116. (Contributed by Thierry Arnoux, 13-Oct-2025)

Ref Expression
Hypotheses fldextrspunfld.k K = L 𝑠 F
fldextrspunfld.i I = L 𝑠 G
fldextrspunfld.j J = L 𝑠 H
fldextrspunfld.2 φ L Field
fldextrspunfld.3 φ F SubDRing I
fldextrspunfld.4 φ F SubDRing J
fldextrspunfld.5 φ G SubDRing L
fldextrspunfld.6 φ H SubDRing L
fldextrspunfld.7 φ J .:. K 0
fldextrspunfld.n N = RingSpan L
fldextrspunfld.c C = N G H
fldextrspunfld.e E = L 𝑠 C
Assertion fldextrspunlem1 φ dim subringAlg E G J .:. K

Proof

Step Hyp Ref Expression
1 fldextrspunfld.k K = L 𝑠 F
2 fldextrspunfld.i I = L 𝑠 G
3 fldextrspunfld.j J = L 𝑠 H
4 fldextrspunfld.2 φ L Field
5 fldextrspunfld.3 φ F SubDRing I
6 fldextrspunfld.4 φ F SubDRing J
7 fldextrspunfld.5 φ G SubDRing L
8 fldextrspunfld.6 φ H SubDRing L
9 fldextrspunfld.7 φ J .:. K 0
10 fldextrspunfld.n N = RingSpan L
11 fldextrspunfld.c C = N G H
12 fldextrspunfld.e E = L 𝑠 C
13 3 sdrgdrng H SubDRing L J DivRing
14 8 13 syl φ J DivRing
15 eqid J 𝑠 F = J 𝑠 F
16 15 sdrgdrng F SubDRing J J 𝑠 F DivRing
17 6 16 syl φ J 𝑠 F DivRing
18 sdrgsubrg H SubDRing L H SubRing L
19 8 18 syl φ H SubRing L
20 sdrgsubrg G SubDRing L G SubRing L
21 7 20 syl φ G SubRing L
22 sdrgsubrg F SubDRing I F SubRing I
23 5 22 syl φ F SubRing I
24 2 subsubrg G SubRing L F SubRing I F SubRing L F G
25 24 biimpa G SubRing L F SubRing I F SubRing L F G
26 21 23 25 syl2anc φ F SubRing L F G
27 26 simpld φ F SubRing L
28 eqid Base J = Base J
29 28 sdrgss F SubDRing J F Base J
30 6 29 syl φ F Base J
31 eqid Base L = Base L
32 31 sdrgss H SubDRing L H Base L
33 8 32 syl φ H Base L
34 3 31 ressbas2 H Base L H = Base J
35 33 34 syl φ H = Base J
36 30 35 sseqtrrd φ F H
37 3 subsubrg H SubRing L F SubRing J F SubRing L F H
38 37 biimpar H SubRing L F SubRing L F H F SubRing J
39 19 27 36 38 syl12anc φ F SubRing J
40 eqid subringAlg J F = subringAlg J F
41 40 15 sralvec J DivRing J 𝑠 F DivRing F SubRing J subringAlg J F LVec
42 14 17 39 41 syl3anc φ subringAlg J F LVec
43 eqid LBasis subringAlg J F = LBasis subringAlg J F
44 43 lbsex subringAlg J F LVec LBasis subringAlg J F
45 42 44 syl φ LBasis subringAlg J F
46 fldidom L Field L IDomn
47 4 46 syl φ L IDomn
48 47 idomringd φ L Ring
49 eqidd φ Base L = Base L
50 31 sdrgss G SubDRing L G Base L
51 7 50 syl φ G Base L
52 51 33 unssd φ G H Base L
53 10 a1i φ N = RingSpan L
54 11 a1i φ C = N G H
55 48 49 52 53 54 rgspncl φ C SubRing L
56 48 49 52 53 54 rgspnssid φ G H C
57 56 unssad φ G C
58 12 subsubrg C SubRing L G SubRing E G SubRing L G C
59 58 biimpar C SubRing L G SubRing L G C G SubRing E
60 55 21 57 59 syl12anc φ G SubRing E
61 eqid subringAlg E G = subringAlg E G
62 61 sralmod G SubRing E subringAlg E G LMod
63 60 62 syl φ subringAlg E G LMod
64 ressabs C SubRing L G C L 𝑠 C 𝑠 G = L 𝑠 G
65 55 57 64 syl2anc φ L 𝑠 C 𝑠 G = L 𝑠 G
66 12 oveq1i E 𝑠 G = L 𝑠 C 𝑠 G
67 65 66 2 3eqtr4g φ E 𝑠 G = I
68 eqidd φ subringAlg E G = subringAlg E G
69 31 subrgss C SubRing L C Base L
70 55 69 syl φ C Base L
71 12 31 ressbas2 C Base L C = Base E
72 70 71 syl φ C = Base E
73 56 72 sseqtrd φ G H Base E
74 73 unssad φ G Base E
75 68 74 srasca φ E 𝑠 G = Scalar subringAlg E G
76 67 75 eqtr3d φ I = Scalar subringAlg E G
77 2 sdrgdrng G SubDRing L I DivRing
78 7 77 syl φ I DivRing
79 76 78 eqeltrrd φ Scalar subringAlg E G DivRing
80 eqid Scalar subringAlg E G = Scalar subringAlg E G
81 80 islvec subringAlg E G LVec subringAlg E G LMod Scalar subringAlg E G DivRing
82 63 79 81 sylanbrc φ subringAlg E G LVec
83 eqid LBasis subringAlg E G = LBasis subringAlg E G
84 83 lbsex subringAlg E G LVec LBasis subringAlg E G
85 82 84 syl φ LBasis subringAlg E G
86 85 adantr φ b LBasis subringAlg J F LBasis subringAlg E G
87 82 ad2antrr φ b LBasis subringAlg J F c LBasis subringAlg E G subringAlg E G LVec
88 simpr φ b LBasis subringAlg J F c LBasis subringAlg E G c LBasis subringAlg E G
89 83 dimval subringAlg E G LVec c LBasis subringAlg E G dim subringAlg E G = c
90 87 88 89 syl2anc φ b LBasis subringAlg J F c LBasis subringAlg E G dim subringAlg E G = c
91 eqid Base subringAlg E G = Base subringAlg E G
92 eqid LSpan subringAlg E G = LSpan subringAlg E G
93 eqid Base subringAlg J F = Base subringAlg J F
94 93 43 lbsss b LBasis subringAlg J F b Base subringAlg J F
95 94 ad2antlr φ b LBasis subringAlg J F c LBasis subringAlg E G b Base subringAlg J F
96 eqidd φ subringAlg J F = subringAlg J F
97 96 30 srabase φ Base J = Base subringAlg J F
98 35 97 eqtrd φ H = Base subringAlg J F
99 98 ad2antrr φ b LBasis subringAlg J F c LBasis subringAlg E G H = Base subringAlg J F
100 95 99 sseqtrrd φ b LBasis subringAlg J F c LBasis subringAlg E G b H
101 56 unssbd φ H C
102 101 ad2antrr φ b LBasis subringAlg J F c LBasis subringAlg E G H C
103 100 102 sstrd φ b LBasis subringAlg J F c LBasis subringAlg E G b C
104 72 ad2antrr φ b LBasis subringAlg J F c LBasis subringAlg E G C = Base E
105 103 104 sseqtrd φ b LBasis subringAlg J F c LBasis subringAlg E G b Base E
106 eqidd φ b LBasis subringAlg J F c LBasis subringAlg E G subringAlg E G = subringAlg E G
107 74 ad2antrr φ b LBasis subringAlg J F c LBasis subringAlg E G G Base E
108 106 107 srabase φ b LBasis subringAlg J F c LBasis subringAlg E G Base E = Base subringAlg E G
109 105 108 sseqtrd φ b LBasis subringAlg J F c LBasis subringAlg E G b Base subringAlg E G
110 63 ad2antrr φ b LBasis subringAlg J F c LBasis subringAlg E G subringAlg E G LMod
111 91 92 lspssv subringAlg E G LMod b Base subringAlg E G LSpan subringAlg E G b Base subringAlg E G
112 110 109 111 syl2anc φ b LBasis subringAlg J F c LBasis subringAlg E G LSpan subringAlg E G b Base subringAlg E G
113 4 adantr φ b LBasis subringAlg J F L Field
114 5 adantr φ b LBasis subringAlg J F F SubDRing I
115 6 adantr φ b LBasis subringAlg J F F SubDRing J
116 7 adantr φ b LBasis subringAlg J F G SubDRing L
117 8 adantr φ b LBasis subringAlg J F H SubDRing L
118 simpr φ b LBasis subringAlg J F b LBasis subringAlg J F
119 fldsdrgfld L Field H SubDRing L L 𝑠 H Field
120 4 8 119 syl2anc φ L 𝑠 H Field
121 3 120 eqeltrid φ J Field
122 ressabs H SubDRing L F H L 𝑠 H 𝑠 F = L 𝑠 F
123 8 36 122 syl2anc φ L 𝑠 H 𝑠 F = L 𝑠 F
124 3 oveq1i J 𝑠 F = L 𝑠 H 𝑠 F
125 123 124 1 3eqtr4g φ J 𝑠 F = K
126 fldsdrgfld J Field F SubDRing J J 𝑠 F Field
127 121 6 126 syl2anc φ J 𝑠 F Field
128 125 127 eqeltrrd φ K Field
129 36 33 sstrd φ F Base L
130 1 31 ressbas2 F Base L F = Base K
131 129 130 syl φ F = Base K
132 131 oveq2d φ J 𝑠 F = J 𝑠 Base K
133 125 132 eqtr3d φ K = J 𝑠 Base K
134 131 39 eqeltrrd φ Base K SubRing J
135 brfldext J Field K Field J /FldExt K K = J 𝑠 Base K Base K SubRing J
136 135 biimpar J Field K Field K = J 𝑠 Base K Base K SubRing J J /FldExt K
137 121 128 133 134 136 syl22anc φ J /FldExt K
138 137 adantr φ b LBasis subringAlg J F J /FldExt K
139 extdgval J /FldExt K J .:. K = dim subringAlg J Base K
140 138 139 syl φ b LBasis subringAlg J F J .:. K = dim subringAlg J Base K
141 131 fveq2d φ subringAlg J F = subringAlg J Base K
142 141 fveq2d φ dim subringAlg J F = dim subringAlg J Base K
143 142 adantr φ b LBasis subringAlg J F dim subringAlg J F = dim subringAlg J Base K
144 43 dimval subringAlg J F LVec b LBasis subringAlg J F dim subringAlg J F = b
145 42 144 sylan φ b LBasis subringAlg J F dim subringAlg J F = b
146 140 143 145 3eqtr2d φ b LBasis subringAlg J F J .:. K = b
147 9 adantr φ b LBasis subringAlg J F J .:. K 0
148 146 147 eqeltrrd φ b LBasis subringAlg J F b 0
149 hashclb b LBasis subringAlg J F b Fin b 0
150 149 biimpar b LBasis subringAlg J F b 0 b Fin
151 118 148 150 syl2anc φ b LBasis subringAlg J F b Fin
152 1 2 3 113 114 115 116 117 10 11 12 118 151 fldextrspunlsp φ b LBasis subringAlg J F C = LSpan subringAlg L G b
153 152 eqimssd φ b LBasis subringAlg J F C LSpan subringAlg L G b
154 31 12 70 57 4 resssra φ subringAlg E G = subringAlg L G 𝑠 C
155 154 fveq2d φ LSpan subringAlg E G = LSpan subringAlg L G 𝑠 C
156 155 adantr φ b LBasis subringAlg J F LSpan subringAlg E G = LSpan subringAlg L G 𝑠 C
157 156 fveq1d φ b LBasis subringAlg J F LSpan subringAlg E G b = LSpan subringAlg L G 𝑠 C b
158 116 20 syl φ b LBasis subringAlg J F G SubRing L
159 eqid subringAlg L G = subringAlg L G
160 159 sralmod G SubRing L subringAlg L G LMod
161 158 160 syl φ b LBasis subringAlg J F subringAlg L G LMod
162 118 94 syl φ b LBasis subringAlg J F b Base subringAlg J F
163 98 adantr φ b LBasis subringAlg J F H = Base subringAlg J F
164 162 163 sseqtrrd φ b LBasis subringAlg J F b H
165 117 32 syl φ b LBasis subringAlg J F H Base L
166 164 165 sstrd φ b LBasis subringAlg J F b Base L
167 eqidd φ subringAlg L G = subringAlg L G
168 167 51 srabase φ Base L = Base subringAlg L G
169 168 adantr φ b LBasis subringAlg J F Base L = Base subringAlg L G
170 166 169 sseqtrd φ b LBasis subringAlg J F b Base subringAlg L G
171 eqid Base subringAlg L G = Base subringAlg L G
172 eqid LSubSp subringAlg L G = LSubSp subringAlg L G
173 eqid LSpan subringAlg L G = LSpan subringAlg L G
174 171 172 173 lspcl subringAlg L G LMod b Base subringAlg L G LSpan subringAlg L G b LSubSp subringAlg L G
175 161 170 174 syl2anc φ b LBasis subringAlg J F LSpan subringAlg L G b LSubSp subringAlg L G
176 152 175 eqeltrd φ b LBasis subringAlg J F C LSubSp subringAlg L G
177 101 adantr φ b LBasis subringAlg J F H C
178 164 177 sstrd φ b LBasis subringAlg J F b C
179 eqid subringAlg L G 𝑠 C = subringAlg L G 𝑠 C
180 eqid LSpan subringAlg L G 𝑠 C = LSpan subringAlg L G 𝑠 C
181 179 173 180 172 lsslsp subringAlg L G LMod C LSubSp subringAlg L G b C LSpan subringAlg L G 𝑠 C b = LSpan subringAlg L G b
182 161 176 178 181 syl3anc φ b LBasis subringAlg J F LSpan subringAlg L G 𝑠 C b = LSpan subringAlg L G b
183 157 182 eqtr2d φ b LBasis subringAlg J F LSpan subringAlg L G b = LSpan subringAlg E G b
184 153 183 sseqtrd φ b LBasis subringAlg J F C LSpan subringAlg E G b
185 184 adantr φ b LBasis subringAlg J F c LBasis subringAlg E G C LSpan subringAlg E G b
186 104 185 eqsstrrd φ b LBasis subringAlg J F c LBasis subringAlg E G Base E LSpan subringAlg E G b
187 108 186 eqsstrrd φ b LBasis subringAlg J F c LBasis subringAlg E G Base subringAlg E G LSpan subringAlg E G b
188 112 187 eqssd φ b LBasis subringAlg J F c LBasis subringAlg E G LSpan subringAlg E G b = Base subringAlg E G
189 91 83 92 87 88 109 188 lbslelsp φ b LBasis subringAlg J F c LBasis subringAlg E G c b
190 90 189 eqbrtrd φ b LBasis subringAlg J F c LBasis subringAlg E G dim subringAlg E G b
191 86 190 n0limd φ b LBasis subringAlg J F dim subringAlg E G b
192 191 146 breqtrrd φ b LBasis subringAlg J F dim subringAlg E G J .:. K
193 45 192 n0limd φ dim subringAlg E G J .:. K