| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fldextrspunfld.k |
⊢ 𝐾 = ( 𝐿 ↾s 𝐹 ) |
| 2 |
|
fldextrspunfld.i |
⊢ 𝐼 = ( 𝐿 ↾s 𝐺 ) |
| 3 |
|
fldextrspunfld.j |
⊢ 𝐽 = ( 𝐿 ↾s 𝐻 ) |
| 4 |
|
fldextrspunfld.2 |
⊢ ( 𝜑 → 𝐿 ∈ Field ) |
| 5 |
|
fldextrspunfld.3 |
⊢ ( 𝜑 → 𝐹 ∈ ( SubDRing ‘ 𝐼 ) ) |
| 6 |
|
fldextrspunfld.4 |
⊢ ( 𝜑 → 𝐹 ∈ ( SubDRing ‘ 𝐽 ) ) |
| 7 |
|
fldextrspunfld.5 |
⊢ ( 𝜑 → 𝐺 ∈ ( SubDRing ‘ 𝐿 ) ) |
| 8 |
|
fldextrspunfld.6 |
⊢ ( 𝜑 → 𝐻 ∈ ( SubDRing ‘ 𝐿 ) ) |
| 9 |
|
fldextrspunfld.7 |
⊢ ( 𝜑 → ( 𝐽 [:] 𝐾 ) ∈ ℕ0 ) |
| 10 |
|
fldextrspunfld.n |
⊢ 𝑁 = ( RingSpan ‘ 𝐿 ) |
| 11 |
|
fldextrspunfld.c |
⊢ 𝐶 = ( 𝑁 ‘ ( 𝐺 ∪ 𝐻 ) ) |
| 12 |
|
fldextrspunfld.e |
⊢ 𝐸 = ( 𝐿 ↾s 𝐶 ) |
| 13 |
3
|
sdrgdrng |
⊢ ( 𝐻 ∈ ( SubDRing ‘ 𝐿 ) → 𝐽 ∈ DivRing ) |
| 14 |
8 13
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ DivRing ) |
| 15 |
|
eqid |
⊢ ( 𝐽 ↾s 𝐹 ) = ( 𝐽 ↾s 𝐹 ) |
| 16 |
15
|
sdrgdrng |
⊢ ( 𝐹 ∈ ( SubDRing ‘ 𝐽 ) → ( 𝐽 ↾s 𝐹 ) ∈ DivRing ) |
| 17 |
6 16
|
syl |
⊢ ( 𝜑 → ( 𝐽 ↾s 𝐹 ) ∈ DivRing ) |
| 18 |
|
sdrgsubrg |
⊢ ( 𝐻 ∈ ( SubDRing ‘ 𝐿 ) → 𝐻 ∈ ( SubRing ‘ 𝐿 ) ) |
| 19 |
8 18
|
syl |
⊢ ( 𝜑 → 𝐻 ∈ ( SubRing ‘ 𝐿 ) ) |
| 20 |
|
sdrgsubrg |
⊢ ( 𝐺 ∈ ( SubDRing ‘ 𝐿 ) → 𝐺 ∈ ( SubRing ‘ 𝐿 ) ) |
| 21 |
7 20
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ ( SubRing ‘ 𝐿 ) ) |
| 22 |
|
sdrgsubrg |
⊢ ( 𝐹 ∈ ( SubDRing ‘ 𝐼 ) → 𝐹 ∈ ( SubRing ‘ 𝐼 ) ) |
| 23 |
5 22
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ ( SubRing ‘ 𝐼 ) ) |
| 24 |
2
|
subsubrg |
⊢ ( 𝐺 ∈ ( SubRing ‘ 𝐿 ) → ( 𝐹 ∈ ( SubRing ‘ 𝐼 ) ↔ ( 𝐹 ∈ ( SubRing ‘ 𝐿 ) ∧ 𝐹 ⊆ 𝐺 ) ) ) |
| 25 |
24
|
biimpa |
⊢ ( ( 𝐺 ∈ ( SubRing ‘ 𝐿 ) ∧ 𝐹 ∈ ( SubRing ‘ 𝐼 ) ) → ( 𝐹 ∈ ( SubRing ‘ 𝐿 ) ∧ 𝐹 ⊆ 𝐺 ) ) |
| 26 |
21 23 25
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ∈ ( SubRing ‘ 𝐿 ) ∧ 𝐹 ⊆ 𝐺 ) ) |
| 27 |
26
|
simpld |
⊢ ( 𝜑 → 𝐹 ∈ ( SubRing ‘ 𝐿 ) ) |
| 28 |
|
eqid |
⊢ ( Base ‘ 𝐽 ) = ( Base ‘ 𝐽 ) |
| 29 |
28
|
sdrgss |
⊢ ( 𝐹 ∈ ( SubDRing ‘ 𝐽 ) → 𝐹 ⊆ ( Base ‘ 𝐽 ) ) |
| 30 |
6 29
|
syl |
⊢ ( 𝜑 → 𝐹 ⊆ ( Base ‘ 𝐽 ) ) |
| 31 |
|
eqid |
⊢ ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 ) |
| 32 |
31
|
sdrgss |
⊢ ( 𝐻 ∈ ( SubDRing ‘ 𝐿 ) → 𝐻 ⊆ ( Base ‘ 𝐿 ) ) |
| 33 |
8 32
|
syl |
⊢ ( 𝜑 → 𝐻 ⊆ ( Base ‘ 𝐿 ) ) |
| 34 |
3 31
|
ressbas2 |
⊢ ( 𝐻 ⊆ ( Base ‘ 𝐿 ) → 𝐻 = ( Base ‘ 𝐽 ) ) |
| 35 |
33 34
|
syl |
⊢ ( 𝜑 → 𝐻 = ( Base ‘ 𝐽 ) ) |
| 36 |
30 35
|
sseqtrrd |
⊢ ( 𝜑 → 𝐹 ⊆ 𝐻 ) |
| 37 |
3
|
subsubrg |
⊢ ( 𝐻 ∈ ( SubRing ‘ 𝐿 ) → ( 𝐹 ∈ ( SubRing ‘ 𝐽 ) ↔ ( 𝐹 ∈ ( SubRing ‘ 𝐿 ) ∧ 𝐹 ⊆ 𝐻 ) ) ) |
| 38 |
37
|
biimpar |
⊢ ( ( 𝐻 ∈ ( SubRing ‘ 𝐿 ) ∧ ( 𝐹 ∈ ( SubRing ‘ 𝐿 ) ∧ 𝐹 ⊆ 𝐻 ) ) → 𝐹 ∈ ( SubRing ‘ 𝐽 ) ) |
| 39 |
19 27 36 38
|
syl12anc |
⊢ ( 𝜑 → 𝐹 ∈ ( SubRing ‘ 𝐽 ) ) |
| 40 |
|
eqid |
⊢ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) = ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) |
| 41 |
40 15
|
sralvec |
⊢ ( ( 𝐽 ∈ DivRing ∧ ( 𝐽 ↾s 𝐹 ) ∈ DivRing ∧ 𝐹 ∈ ( SubRing ‘ 𝐽 ) ) → ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ∈ LVec ) |
| 42 |
14 17 39 41
|
syl3anc |
⊢ ( 𝜑 → ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ∈ LVec ) |
| 43 |
|
eqid |
⊢ ( LBasis ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) = ( LBasis ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) |
| 44 |
43
|
lbsex |
⊢ ( ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ∈ LVec → ( LBasis ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) ≠ ∅ ) |
| 45 |
42 44
|
syl |
⊢ ( 𝜑 → ( LBasis ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) ≠ ∅ ) |
| 46 |
|
fldidom |
⊢ ( 𝐿 ∈ Field → 𝐿 ∈ IDomn ) |
| 47 |
4 46
|
syl |
⊢ ( 𝜑 → 𝐿 ∈ IDomn ) |
| 48 |
47
|
idomringd |
⊢ ( 𝜑 → 𝐿 ∈ Ring ) |
| 49 |
|
eqidd |
⊢ ( 𝜑 → ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 ) ) |
| 50 |
31
|
sdrgss |
⊢ ( 𝐺 ∈ ( SubDRing ‘ 𝐿 ) → 𝐺 ⊆ ( Base ‘ 𝐿 ) ) |
| 51 |
7 50
|
syl |
⊢ ( 𝜑 → 𝐺 ⊆ ( Base ‘ 𝐿 ) ) |
| 52 |
51 33
|
unssd |
⊢ ( 𝜑 → ( 𝐺 ∪ 𝐻 ) ⊆ ( Base ‘ 𝐿 ) ) |
| 53 |
10
|
a1i |
⊢ ( 𝜑 → 𝑁 = ( RingSpan ‘ 𝐿 ) ) |
| 54 |
11
|
a1i |
⊢ ( 𝜑 → 𝐶 = ( 𝑁 ‘ ( 𝐺 ∪ 𝐻 ) ) ) |
| 55 |
48 49 52 53 54
|
rgspncl |
⊢ ( 𝜑 → 𝐶 ∈ ( SubRing ‘ 𝐿 ) ) |
| 56 |
48 49 52 53 54
|
rgspnssid |
⊢ ( 𝜑 → ( 𝐺 ∪ 𝐻 ) ⊆ 𝐶 ) |
| 57 |
56
|
unssad |
⊢ ( 𝜑 → 𝐺 ⊆ 𝐶 ) |
| 58 |
12
|
subsubrg |
⊢ ( 𝐶 ∈ ( SubRing ‘ 𝐿 ) → ( 𝐺 ∈ ( SubRing ‘ 𝐸 ) ↔ ( 𝐺 ∈ ( SubRing ‘ 𝐿 ) ∧ 𝐺 ⊆ 𝐶 ) ) ) |
| 59 |
58
|
biimpar |
⊢ ( ( 𝐶 ∈ ( SubRing ‘ 𝐿 ) ∧ ( 𝐺 ∈ ( SubRing ‘ 𝐿 ) ∧ 𝐺 ⊆ 𝐶 ) ) → 𝐺 ∈ ( SubRing ‘ 𝐸 ) ) |
| 60 |
55 21 57 59
|
syl12anc |
⊢ ( 𝜑 → 𝐺 ∈ ( SubRing ‘ 𝐸 ) ) |
| 61 |
|
eqid |
⊢ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) = ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) |
| 62 |
61
|
sralmod |
⊢ ( 𝐺 ∈ ( SubRing ‘ 𝐸 ) → ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ∈ LMod ) |
| 63 |
60 62
|
syl |
⊢ ( 𝜑 → ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ∈ LMod ) |
| 64 |
|
ressabs |
⊢ ( ( 𝐶 ∈ ( SubRing ‘ 𝐿 ) ∧ 𝐺 ⊆ 𝐶 ) → ( ( 𝐿 ↾s 𝐶 ) ↾s 𝐺 ) = ( 𝐿 ↾s 𝐺 ) ) |
| 65 |
55 57 64
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐿 ↾s 𝐶 ) ↾s 𝐺 ) = ( 𝐿 ↾s 𝐺 ) ) |
| 66 |
12
|
oveq1i |
⊢ ( 𝐸 ↾s 𝐺 ) = ( ( 𝐿 ↾s 𝐶 ) ↾s 𝐺 ) |
| 67 |
65 66 2
|
3eqtr4g |
⊢ ( 𝜑 → ( 𝐸 ↾s 𝐺 ) = 𝐼 ) |
| 68 |
|
eqidd |
⊢ ( 𝜑 → ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) = ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) |
| 69 |
31
|
subrgss |
⊢ ( 𝐶 ∈ ( SubRing ‘ 𝐿 ) → 𝐶 ⊆ ( Base ‘ 𝐿 ) ) |
| 70 |
55 69
|
syl |
⊢ ( 𝜑 → 𝐶 ⊆ ( Base ‘ 𝐿 ) ) |
| 71 |
12 31
|
ressbas2 |
⊢ ( 𝐶 ⊆ ( Base ‘ 𝐿 ) → 𝐶 = ( Base ‘ 𝐸 ) ) |
| 72 |
70 71
|
syl |
⊢ ( 𝜑 → 𝐶 = ( Base ‘ 𝐸 ) ) |
| 73 |
56 72
|
sseqtrd |
⊢ ( 𝜑 → ( 𝐺 ∪ 𝐻 ) ⊆ ( Base ‘ 𝐸 ) ) |
| 74 |
73
|
unssad |
⊢ ( 𝜑 → 𝐺 ⊆ ( Base ‘ 𝐸 ) ) |
| 75 |
68 74
|
srasca |
⊢ ( 𝜑 → ( 𝐸 ↾s 𝐺 ) = ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) ) |
| 76 |
67 75
|
eqtr3d |
⊢ ( 𝜑 → 𝐼 = ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) ) |
| 77 |
2
|
sdrgdrng |
⊢ ( 𝐺 ∈ ( SubDRing ‘ 𝐿 ) → 𝐼 ∈ DivRing ) |
| 78 |
7 77
|
syl |
⊢ ( 𝜑 → 𝐼 ∈ DivRing ) |
| 79 |
76 78
|
eqeltrrd |
⊢ ( 𝜑 → ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) ∈ DivRing ) |
| 80 |
|
eqid |
⊢ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) = ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) |
| 81 |
80
|
islvec |
⊢ ( ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ∈ LVec ↔ ( ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ∈ LMod ∧ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) ∈ DivRing ) ) |
| 82 |
63 79 81
|
sylanbrc |
⊢ ( 𝜑 → ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ∈ LVec ) |
| 83 |
|
eqid |
⊢ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) = ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) |
| 84 |
83
|
lbsex |
⊢ ( ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ∈ LVec → ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) ≠ ∅ ) |
| 85 |
82 84
|
syl |
⊢ ( 𝜑 → ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) ≠ ∅ ) |
| 86 |
85
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) ) → ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) ≠ ∅ ) |
| 87 |
82
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑐 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) ) → ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ∈ LVec ) |
| 88 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑐 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) ) → 𝑐 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) ) |
| 89 |
83
|
dimval |
⊢ ( ( ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ∈ LVec ∧ 𝑐 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) ) → ( dim ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) = ( ♯ ‘ 𝑐 ) ) |
| 90 |
87 88 89
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑐 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) ) → ( dim ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) = ( ♯ ‘ 𝑐 ) ) |
| 91 |
|
eqid |
⊢ ( Base ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) = ( Base ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) |
| 92 |
|
eqid |
⊢ ( LSpan ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) = ( LSpan ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) |
| 93 |
|
eqid |
⊢ ( Base ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) = ( Base ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) |
| 94 |
93 43
|
lbsss |
⊢ ( 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) → 𝑏 ⊆ ( Base ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) ) |
| 95 |
94
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑐 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) ) → 𝑏 ⊆ ( Base ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) ) |
| 96 |
|
eqidd |
⊢ ( 𝜑 → ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) = ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) |
| 97 |
96 30
|
srabase |
⊢ ( 𝜑 → ( Base ‘ 𝐽 ) = ( Base ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) ) |
| 98 |
35 97
|
eqtrd |
⊢ ( 𝜑 → 𝐻 = ( Base ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) ) |
| 99 |
98
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑐 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) ) → 𝐻 = ( Base ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) ) |
| 100 |
95 99
|
sseqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑐 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) ) → 𝑏 ⊆ 𝐻 ) |
| 101 |
56
|
unssbd |
⊢ ( 𝜑 → 𝐻 ⊆ 𝐶 ) |
| 102 |
101
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑐 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) ) → 𝐻 ⊆ 𝐶 ) |
| 103 |
100 102
|
sstrd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑐 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) ) → 𝑏 ⊆ 𝐶 ) |
| 104 |
72
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑐 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) ) → 𝐶 = ( Base ‘ 𝐸 ) ) |
| 105 |
103 104
|
sseqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑐 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) ) → 𝑏 ⊆ ( Base ‘ 𝐸 ) ) |
| 106 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑐 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) ) → ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) = ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) |
| 107 |
74
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑐 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) ) → 𝐺 ⊆ ( Base ‘ 𝐸 ) ) |
| 108 |
106 107
|
srabase |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑐 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) ) → ( Base ‘ 𝐸 ) = ( Base ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) ) |
| 109 |
105 108
|
sseqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑐 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) ) → 𝑏 ⊆ ( Base ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) ) |
| 110 |
63
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑐 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) ) → ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ∈ LMod ) |
| 111 |
91 92
|
lspssv |
⊢ ( ( ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ∈ LMod ∧ 𝑏 ⊆ ( Base ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) ) → ( ( LSpan ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) ‘ 𝑏 ) ⊆ ( Base ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) ) |
| 112 |
110 109 111
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑐 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) ) → ( ( LSpan ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) ‘ 𝑏 ) ⊆ ( Base ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) ) |
| 113 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) ) → 𝐿 ∈ Field ) |
| 114 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) ) → 𝐹 ∈ ( SubDRing ‘ 𝐼 ) ) |
| 115 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) ) → 𝐹 ∈ ( SubDRing ‘ 𝐽 ) ) |
| 116 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) ) → 𝐺 ∈ ( SubDRing ‘ 𝐿 ) ) |
| 117 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) ) → 𝐻 ∈ ( SubDRing ‘ 𝐿 ) ) |
| 118 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) ) → 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) ) |
| 119 |
|
fldsdrgfld |
⊢ ( ( 𝐿 ∈ Field ∧ 𝐻 ∈ ( SubDRing ‘ 𝐿 ) ) → ( 𝐿 ↾s 𝐻 ) ∈ Field ) |
| 120 |
4 8 119
|
syl2anc |
⊢ ( 𝜑 → ( 𝐿 ↾s 𝐻 ) ∈ Field ) |
| 121 |
3 120
|
eqeltrid |
⊢ ( 𝜑 → 𝐽 ∈ Field ) |
| 122 |
|
ressabs |
⊢ ( ( 𝐻 ∈ ( SubDRing ‘ 𝐿 ) ∧ 𝐹 ⊆ 𝐻 ) → ( ( 𝐿 ↾s 𝐻 ) ↾s 𝐹 ) = ( 𝐿 ↾s 𝐹 ) ) |
| 123 |
8 36 122
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐿 ↾s 𝐻 ) ↾s 𝐹 ) = ( 𝐿 ↾s 𝐹 ) ) |
| 124 |
3
|
oveq1i |
⊢ ( 𝐽 ↾s 𝐹 ) = ( ( 𝐿 ↾s 𝐻 ) ↾s 𝐹 ) |
| 125 |
123 124 1
|
3eqtr4g |
⊢ ( 𝜑 → ( 𝐽 ↾s 𝐹 ) = 𝐾 ) |
| 126 |
|
fldsdrgfld |
⊢ ( ( 𝐽 ∈ Field ∧ 𝐹 ∈ ( SubDRing ‘ 𝐽 ) ) → ( 𝐽 ↾s 𝐹 ) ∈ Field ) |
| 127 |
121 6 126
|
syl2anc |
⊢ ( 𝜑 → ( 𝐽 ↾s 𝐹 ) ∈ Field ) |
| 128 |
125 127
|
eqeltrrd |
⊢ ( 𝜑 → 𝐾 ∈ Field ) |
| 129 |
36 33
|
sstrd |
⊢ ( 𝜑 → 𝐹 ⊆ ( Base ‘ 𝐿 ) ) |
| 130 |
1 31
|
ressbas2 |
⊢ ( 𝐹 ⊆ ( Base ‘ 𝐿 ) → 𝐹 = ( Base ‘ 𝐾 ) ) |
| 131 |
129 130
|
syl |
⊢ ( 𝜑 → 𝐹 = ( Base ‘ 𝐾 ) ) |
| 132 |
131
|
oveq2d |
⊢ ( 𝜑 → ( 𝐽 ↾s 𝐹 ) = ( 𝐽 ↾s ( Base ‘ 𝐾 ) ) ) |
| 133 |
125 132
|
eqtr3d |
⊢ ( 𝜑 → 𝐾 = ( 𝐽 ↾s ( Base ‘ 𝐾 ) ) ) |
| 134 |
131 39
|
eqeltrrd |
⊢ ( 𝜑 → ( Base ‘ 𝐾 ) ∈ ( SubRing ‘ 𝐽 ) ) |
| 135 |
|
brfldext |
⊢ ( ( 𝐽 ∈ Field ∧ 𝐾 ∈ Field ) → ( 𝐽 /FldExt 𝐾 ↔ ( 𝐾 = ( 𝐽 ↾s ( Base ‘ 𝐾 ) ) ∧ ( Base ‘ 𝐾 ) ∈ ( SubRing ‘ 𝐽 ) ) ) ) |
| 136 |
135
|
biimpar |
⊢ ( ( ( 𝐽 ∈ Field ∧ 𝐾 ∈ Field ) ∧ ( 𝐾 = ( 𝐽 ↾s ( Base ‘ 𝐾 ) ) ∧ ( Base ‘ 𝐾 ) ∈ ( SubRing ‘ 𝐽 ) ) ) → 𝐽 /FldExt 𝐾 ) |
| 137 |
121 128 133 134 136
|
syl22anc |
⊢ ( 𝜑 → 𝐽 /FldExt 𝐾 ) |
| 138 |
137
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) ) → 𝐽 /FldExt 𝐾 ) |
| 139 |
|
extdgval |
⊢ ( 𝐽 /FldExt 𝐾 → ( 𝐽 [:] 𝐾 ) = ( dim ‘ ( ( subringAlg ‘ 𝐽 ) ‘ ( Base ‘ 𝐾 ) ) ) ) |
| 140 |
138 139
|
syl |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) ) → ( 𝐽 [:] 𝐾 ) = ( dim ‘ ( ( subringAlg ‘ 𝐽 ) ‘ ( Base ‘ 𝐾 ) ) ) ) |
| 141 |
131
|
fveq2d |
⊢ ( 𝜑 → ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) = ( ( subringAlg ‘ 𝐽 ) ‘ ( Base ‘ 𝐾 ) ) ) |
| 142 |
141
|
fveq2d |
⊢ ( 𝜑 → ( dim ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) = ( dim ‘ ( ( subringAlg ‘ 𝐽 ) ‘ ( Base ‘ 𝐾 ) ) ) ) |
| 143 |
142
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) ) → ( dim ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) = ( dim ‘ ( ( subringAlg ‘ 𝐽 ) ‘ ( Base ‘ 𝐾 ) ) ) ) |
| 144 |
43
|
dimval |
⊢ ( ( ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ∈ LVec ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) ) → ( dim ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) = ( ♯ ‘ 𝑏 ) ) |
| 145 |
42 144
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) ) → ( dim ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) = ( ♯ ‘ 𝑏 ) ) |
| 146 |
140 143 145
|
3eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) ) → ( 𝐽 [:] 𝐾 ) = ( ♯ ‘ 𝑏 ) ) |
| 147 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) ) → ( 𝐽 [:] 𝐾 ) ∈ ℕ0 ) |
| 148 |
146 147
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) ) → ( ♯ ‘ 𝑏 ) ∈ ℕ0 ) |
| 149 |
|
hashclb |
⊢ ( 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) → ( 𝑏 ∈ Fin ↔ ( ♯ ‘ 𝑏 ) ∈ ℕ0 ) ) |
| 150 |
149
|
biimpar |
⊢ ( ( 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝑏 ) ∈ ℕ0 ) → 𝑏 ∈ Fin ) |
| 151 |
118 148 150
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) ) → 𝑏 ∈ Fin ) |
| 152 |
1 2 3 113 114 115 116 117 10 11 12 118 151
|
fldextrspunlsp |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) ) → 𝐶 = ( ( LSpan ‘ ( ( subringAlg ‘ 𝐿 ) ‘ 𝐺 ) ) ‘ 𝑏 ) ) |
| 153 |
152
|
eqimssd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) ) → 𝐶 ⊆ ( ( LSpan ‘ ( ( subringAlg ‘ 𝐿 ) ‘ 𝐺 ) ) ‘ 𝑏 ) ) |
| 154 |
31 12 70 57 4
|
resssra |
⊢ ( 𝜑 → ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) = ( ( ( subringAlg ‘ 𝐿 ) ‘ 𝐺 ) ↾s 𝐶 ) ) |
| 155 |
154
|
fveq2d |
⊢ ( 𝜑 → ( LSpan ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) = ( LSpan ‘ ( ( ( subringAlg ‘ 𝐿 ) ‘ 𝐺 ) ↾s 𝐶 ) ) ) |
| 156 |
155
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) ) → ( LSpan ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) = ( LSpan ‘ ( ( ( subringAlg ‘ 𝐿 ) ‘ 𝐺 ) ↾s 𝐶 ) ) ) |
| 157 |
156
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) ) → ( ( LSpan ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) ‘ 𝑏 ) = ( ( LSpan ‘ ( ( ( subringAlg ‘ 𝐿 ) ‘ 𝐺 ) ↾s 𝐶 ) ) ‘ 𝑏 ) ) |
| 158 |
116 20
|
syl |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) ) → 𝐺 ∈ ( SubRing ‘ 𝐿 ) ) |
| 159 |
|
eqid |
⊢ ( ( subringAlg ‘ 𝐿 ) ‘ 𝐺 ) = ( ( subringAlg ‘ 𝐿 ) ‘ 𝐺 ) |
| 160 |
159
|
sralmod |
⊢ ( 𝐺 ∈ ( SubRing ‘ 𝐿 ) → ( ( subringAlg ‘ 𝐿 ) ‘ 𝐺 ) ∈ LMod ) |
| 161 |
158 160
|
syl |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) ) → ( ( subringAlg ‘ 𝐿 ) ‘ 𝐺 ) ∈ LMod ) |
| 162 |
118 94
|
syl |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) ) → 𝑏 ⊆ ( Base ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) ) |
| 163 |
98
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) ) → 𝐻 = ( Base ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) ) |
| 164 |
162 163
|
sseqtrrd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) ) → 𝑏 ⊆ 𝐻 ) |
| 165 |
117 32
|
syl |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) ) → 𝐻 ⊆ ( Base ‘ 𝐿 ) ) |
| 166 |
164 165
|
sstrd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) ) → 𝑏 ⊆ ( Base ‘ 𝐿 ) ) |
| 167 |
|
eqidd |
⊢ ( 𝜑 → ( ( subringAlg ‘ 𝐿 ) ‘ 𝐺 ) = ( ( subringAlg ‘ 𝐿 ) ‘ 𝐺 ) ) |
| 168 |
167 51
|
srabase |
⊢ ( 𝜑 → ( Base ‘ 𝐿 ) = ( Base ‘ ( ( subringAlg ‘ 𝐿 ) ‘ 𝐺 ) ) ) |
| 169 |
168
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) ) → ( Base ‘ 𝐿 ) = ( Base ‘ ( ( subringAlg ‘ 𝐿 ) ‘ 𝐺 ) ) ) |
| 170 |
166 169
|
sseqtrd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) ) → 𝑏 ⊆ ( Base ‘ ( ( subringAlg ‘ 𝐿 ) ‘ 𝐺 ) ) ) |
| 171 |
|
eqid |
⊢ ( Base ‘ ( ( subringAlg ‘ 𝐿 ) ‘ 𝐺 ) ) = ( Base ‘ ( ( subringAlg ‘ 𝐿 ) ‘ 𝐺 ) ) |
| 172 |
|
eqid |
⊢ ( LSubSp ‘ ( ( subringAlg ‘ 𝐿 ) ‘ 𝐺 ) ) = ( LSubSp ‘ ( ( subringAlg ‘ 𝐿 ) ‘ 𝐺 ) ) |
| 173 |
|
eqid |
⊢ ( LSpan ‘ ( ( subringAlg ‘ 𝐿 ) ‘ 𝐺 ) ) = ( LSpan ‘ ( ( subringAlg ‘ 𝐿 ) ‘ 𝐺 ) ) |
| 174 |
171 172 173
|
lspcl |
⊢ ( ( ( ( subringAlg ‘ 𝐿 ) ‘ 𝐺 ) ∈ LMod ∧ 𝑏 ⊆ ( Base ‘ ( ( subringAlg ‘ 𝐿 ) ‘ 𝐺 ) ) ) → ( ( LSpan ‘ ( ( subringAlg ‘ 𝐿 ) ‘ 𝐺 ) ) ‘ 𝑏 ) ∈ ( LSubSp ‘ ( ( subringAlg ‘ 𝐿 ) ‘ 𝐺 ) ) ) |
| 175 |
161 170 174
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) ) → ( ( LSpan ‘ ( ( subringAlg ‘ 𝐿 ) ‘ 𝐺 ) ) ‘ 𝑏 ) ∈ ( LSubSp ‘ ( ( subringAlg ‘ 𝐿 ) ‘ 𝐺 ) ) ) |
| 176 |
152 175
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) ) → 𝐶 ∈ ( LSubSp ‘ ( ( subringAlg ‘ 𝐿 ) ‘ 𝐺 ) ) ) |
| 177 |
101
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) ) → 𝐻 ⊆ 𝐶 ) |
| 178 |
164 177
|
sstrd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) ) → 𝑏 ⊆ 𝐶 ) |
| 179 |
|
eqid |
⊢ ( ( ( subringAlg ‘ 𝐿 ) ‘ 𝐺 ) ↾s 𝐶 ) = ( ( ( subringAlg ‘ 𝐿 ) ‘ 𝐺 ) ↾s 𝐶 ) |
| 180 |
|
eqid |
⊢ ( LSpan ‘ ( ( ( subringAlg ‘ 𝐿 ) ‘ 𝐺 ) ↾s 𝐶 ) ) = ( LSpan ‘ ( ( ( subringAlg ‘ 𝐿 ) ‘ 𝐺 ) ↾s 𝐶 ) ) |
| 181 |
179 173 180 172
|
lsslsp |
⊢ ( ( ( ( subringAlg ‘ 𝐿 ) ‘ 𝐺 ) ∈ LMod ∧ 𝐶 ∈ ( LSubSp ‘ ( ( subringAlg ‘ 𝐿 ) ‘ 𝐺 ) ) ∧ 𝑏 ⊆ 𝐶 ) → ( ( LSpan ‘ ( ( ( subringAlg ‘ 𝐿 ) ‘ 𝐺 ) ↾s 𝐶 ) ) ‘ 𝑏 ) = ( ( LSpan ‘ ( ( subringAlg ‘ 𝐿 ) ‘ 𝐺 ) ) ‘ 𝑏 ) ) |
| 182 |
161 176 178 181
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) ) → ( ( LSpan ‘ ( ( ( subringAlg ‘ 𝐿 ) ‘ 𝐺 ) ↾s 𝐶 ) ) ‘ 𝑏 ) = ( ( LSpan ‘ ( ( subringAlg ‘ 𝐿 ) ‘ 𝐺 ) ) ‘ 𝑏 ) ) |
| 183 |
157 182
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) ) → ( ( LSpan ‘ ( ( subringAlg ‘ 𝐿 ) ‘ 𝐺 ) ) ‘ 𝑏 ) = ( ( LSpan ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) ‘ 𝑏 ) ) |
| 184 |
153 183
|
sseqtrd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) ) → 𝐶 ⊆ ( ( LSpan ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) ‘ 𝑏 ) ) |
| 185 |
184
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑐 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) ) → 𝐶 ⊆ ( ( LSpan ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) ‘ 𝑏 ) ) |
| 186 |
104 185
|
eqsstrrd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑐 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) ) → ( Base ‘ 𝐸 ) ⊆ ( ( LSpan ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) ‘ 𝑏 ) ) |
| 187 |
108 186
|
eqsstrrd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑐 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) ) → ( Base ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) ⊆ ( ( LSpan ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) ‘ 𝑏 ) ) |
| 188 |
112 187
|
eqssd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑐 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) ) → ( ( LSpan ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) ‘ 𝑏 ) = ( Base ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) ) |
| 189 |
91 83 92 87 88 109 188
|
lbslelsp |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑐 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) ) → ( ♯ ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑏 ) ) |
| 190 |
90 189
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) ) ∧ 𝑐 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) ) → ( dim ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) ≤ ( ♯ ‘ 𝑏 ) ) |
| 191 |
86 190
|
n0limd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) ) → ( dim ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) ≤ ( ♯ ‘ 𝑏 ) ) |
| 192 |
191 146
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( LBasis ‘ ( ( subringAlg ‘ 𝐽 ) ‘ 𝐹 ) ) ) → ( dim ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) ≤ ( 𝐽 [:] 𝐾 ) ) |
| 193 |
45 192
|
n0limd |
⊢ ( 𝜑 → ( dim ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) ≤ ( 𝐽 [:] 𝐾 ) ) |