| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fldextrspunfld.k |
⊢ 𝐾 = ( 𝐿 ↾s 𝐹 ) |
| 2 |
|
fldextrspunfld.i |
⊢ 𝐼 = ( 𝐿 ↾s 𝐺 ) |
| 3 |
|
fldextrspunfld.j |
⊢ 𝐽 = ( 𝐿 ↾s 𝐻 ) |
| 4 |
|
fldextrspunfld.2 |
⊢ ( 𝜑 → 𝐿 ∈ Field ) |
| 5 |
|
fldextrspunfld.3 |
⊢ ( 𝜑 → 𝐹 ∈ ( SubDRing ‘ 𝐼 ) ) |
| 6 |
|
fldextrspunfld.4 |
⊢ ( 𝜑 → 𝐹 ∈ ( SubDRing ‘ 𝐽 ) ) |
| 7 |
|
fldextrspunfld.5 |
⊢ ( 𝜑 → 𝐺 ∈ ( SubDRing ‘ 𝐿 ) ) |
| 8 |
|
fldextrspunfld.6 |
⊢ ( 𝜑 → 𝐻 ∈ ( SubDRing ‘ 𝐿 ) ) |
| 9 |
|
fldextrspunfld.7 |
⊢ ( 𝜑 → ( 𝐽 [:] 𝐾 ) ∈ ℕ0 ) |
| 10 |
|
fldextrspunfld.n |
⊢ 𝑁 = ( RingSpan ‘ 𝐿 ) |
| 11 |
|
fldextrspunfld.c |
⊢ 𝐶 = ( 𝑁 ‘ ( 𝐺 ∪ 𝐻 ) ) |
| 12 |
|
fldextrspunfld.e |
⊢ 𝐸 = ( 𝐿 ↾s 𝐶 ) |
| 13 |
|
eqid |
⊢ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) = ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) |
| 14 |
4
|
flddrngd |
⊢ ( 𝜑 → 𝐿 ∈ DivRing ) |
| 15 |
14
|
drngringd |
⊢ ( 𝜑 → 𝐿 ∈ Ring ) |
| 16 |
|
eqidd |
⊢ ( 𝜑 → ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 ) ) |
| 17 |
|
eqid |
⊢ ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 ) |
| 18 |
17
|
sdrgss |
⊢ ( 𝐺 ∈ ( SubDRing ‘ 𝐿 ) → 𝐺 ⊆ ( Base ‘ 𝐿 ) ) |
| 19 |
7 18
|
syl |
⊢ ( 𝜑 → 𝐺 ⊆ ( Base ‘ 𝐿 ) ) |
| 20 |
17
|
sdrgss |
⊢ ( 𝐻 ∈ ( SubDRing ‘ 𝐿 ) → 𝐻 ⊆ ( Base ‘ 𝐿 ) ) |
| 21 |
8 20
|
syl |
⊢ ( 𝜑 → 𝐻 ⊆ ( Base ‘ 𝐿 ) ) |
| 22 |
19 21
|
unssd |
⊢ ( 𝜑 → ( 𝐺 ∪ 𝐻 ) ⊆ ( Base ‘ 𝐿 ) ) |
| 23 |
10
|
a1i |
⊢ ( 𝜑 → 𝑁 = ( RingSpan ‘ 𝐿 ) ) |
| 24 |
11
|
a1i |
⊢ ( 𝜑 → 𝐶 = ( 𝑁 ‘ ( 𝐺 ∪ 𝐻 ) ) ) |
| 25 |
15 16 22 23 24
|
rgspncl |
⊢ ( 𝜑 → 𝐶 ∈ ( SubRing ‘ 𝐿 ) ) |
| 26 |
4 25
|
subrfld |
⊢ ( 𝜑 → ( 𝐿 ↾s 𝐶 ) ∈ IDomn ) |
| 27 |
12 26
|
eqeltrid |
⊢ ( 𝜑 → 𝐸 ∈ IDomn ) |
| 28 |
27
|
idomcringd |
⊢ ( 𝜑 → 𝐸 ∈ CRing ) |
| 29 |
|
sdrgsubrg |
⊢ ( 𝐺 ∈ ( SubDRing ‘ 𝐿 ) → 𝐺 ∈ ( SubRing ‘ 𝐿 ) ) |
| 30 |
7 29
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ ( SubRing ‘ 𝐿 ) ) |
| 31 |
15 16 22 23 24
|
rgspnssid |
⊢ ( 𝜑 → ( 𝐺 ∪ 𝐻 ) ⊆ 𝐶 ) |
| 32 |
31
|
unssad |
⊢ ( 𝜑 → 𝐺 ⊆ 𝐶 ) |
| 33 |
12
|
subsubrg |
⊢ ( 𝐶 ∈ ( SubRing ‘ 𝐿 ) → ( 𝐺 ∈ ( SubRing ‘ 𝐸 ) ↔ ( 𝐺 ∈ ( SubRing ‘ 𝐿 ) ∧ 𝐺 ⊆ 𝐶 ) ) ) |
| 34 |
33
|
biimpar |
⊢ ( ( 𝐶 ∈ ( SubRing ‘ 𝐿 ) ∧ ( 𝐺 ∈ ( SubRing ‘ 𝐿 ) ∧ 𝐺 ⊆ 𝐶 ) ) → 𝐺 ∈ ( SubRing ‘ 𝐸 ) ) |
| 35 |
25 30 32 34
|
syl12anc |
⊢ ( 𝜑 → 𝐺 ∈ ( SubRing ‘ 𝐸 ) ) |
| 36 |
|
eqid |
⊢ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) = ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) |
| 37 |
36
|
sraassa |
⊢ ( ( 𝐸 ∈ CRing ∧ 𝐺 ∈ ( SubRing ‘ 𝐸 ) ) → ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ∈ AssAlg ) |
| 38 |
28 35 37
|
syl2anc |
⊢ ( 𝜑 → ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ∈ AssAlg ) |
| 39 |
|
eqid |
⊢ ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 ) |
| 40 |
17
|
subrgss |
⊢ ( 𝐶 ∈ ( SubRing ‘ 𝐿 ) → 𝐶 ⊆ ( Base ‘ 𝐿 ) ) |
| 41 |
25 40
|
syl |
⊢ ( 𝜑 → 𝐶 ⊆ ( Base ‘ 𝐿 ) ) |
| 42 |
12 17
|
ressbas2 |
⊢ ( 𝐶 ⊆ ( Base ‘ 𝐿 ) → 𝐶 = ( Base ‘ 𝐸 ) ) |
| 43 |
41 42
|
syl |
⊢ ( 𝜑 → 𝐶 = ( Base ‘ 𝐸 ) ) |
| 44 |
32 43
|
sseqtrd |
⊢ ( 𝜑 → 𝐺 ⊆ ( Base ‘ 𝐸 ) ) |
| 45 |
36 39 27 44
|
sraidom |
⊢ ( 𝜑 → ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ∈ IDomn ) |
| 46 |
|
ressabs |
⊢ ( ( 𝐶 ∈ ( SubRing ‘ 𝐿 ) ∧ 𝐺 ⊆ 𝐶 ) → ( ( 𝐿 ↾s 𝐶 ) ↾s 𝐺 ) = ( 𝐿 ↾s 𝐺 ) ) |
| 47 |
25 32 46
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐿 ↾s 𝐶 ) ↾s 𝐺 ) = ( 𝐿 ↾s 𝐺 ) ) |
| 48 |
12
|
oveq1i |
⊢ ( 𝐸 ↾s 𝐺 ) = ( ( 𝐿 ↾s 𝐶 ) ↾s 𝐺 ) |
| 49 |
47 48 2
|
3eqtr4g |
⊢ ( 𝜑 → ( 𝐸 ↾s 𝐺 ) = 𝐼 ) |
| 50 |
|
eqidd |
⊢ ( 𝜑 → ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) = ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) |
| 51 |
50 44
|
srasca |
⊢ ( 𝜑 → ( 𝐸 ↾s 𝐺 ) = ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) ) |
| 52 |
49 51
|
eqtr3d |
⊢ ( 𝜑 → 𝐼 = ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) ) |
| 53 |
2
|
sdrgdrng |
⊢ ( 𝐺 ∈ ( SubDRing ‘ 𝐿 ) → 𝐼 ∈ DivRing ) |
| 54 |
7 53
|
syl |
⊢ ( 𝜑 → 𝐼 ∈ DivRing ) |
| 55 |
52 54
|
eqeltrrd |
⊢ ( 𝜑 → ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) ∈ DivRing ) |
| 56 |
36
|
sralmod |
⊢ ( 𝐺 ∈ ( SubRing ‘ 𝐸 ) → ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ∈ LMod ) |
| 57 |
35 56
|
syl |
⊢ ( 𝜑 → ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ∈ LMod ) |
| 58 |
13
|
islvec |
⊢ ( ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ∈ LVec ↔ ( ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ∈ LMod ∧ ( Scalar ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) ∈ DivRing ) ) |
| 59 |
57 55 58
|
sylanbrc |
⊢ ( 𝜑 → ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ∈ LVec ) |
| 60 |
|
dimcl |
⊢ ( ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ∈ LVec → ( dim ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) ∈ ℕ0* ) |
| 61 |
59 60
|
syl |
⊢ ( 𝜑 → ( dim ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) ∈ ℕ0* ) |
| 62 |
1 2 3 4 5 6 7 8 9 10 11 12
|
fldextrspunlem1 |
⊢ ( 𝜑 → ( dim ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) ≤ ( 𝐽 [:] 𝐾 ) ) |
| 63 |
|
xnn0lenn0nn0 |
⊢ ( ( ( dim ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) ∈ ℕ0* ∧ ( 𝐽 [:] 𝐾 ) ∈ ℕ0 ∧ ( dim ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) ≤ ( 𝐽 [:] 𝐾 ) ) → ( dim ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) ∈ ℕ0 ) |
| 64 |
61 9 62 63
|
syl3anc |
⊢ ( 𝜑 → ( dim ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) ∈ ℕ0 ) |
| 65 |
13 38 45 55 64
|
assafld |
⊢ ( 𝜑 → ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ∈ Field ) |
| 66 |
50 44
|
srabase |
⊢ ( 𝜑 → ( Base ‘ 𝐸 ) = ( Base ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) ) |
| 67 |
43 66
|
eqtrd |
⊢ ( 𝜑 → 𝐶 = ( Base ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) ) |
| 68 |
50 44
|
sraaddg |
⊢ ( 𝜑 → ( +g ‘ 𝐸 ) = ( +g ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) ) |
| 69 |
68
|
oveqdr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 ( +g ‘ 𝐸 ) 𝑦 ) = ( 𝑥 ( +g ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) 𝑦 ) ) |
| 70 |
50 44
|
sramulr |
⊢ ( 𝜑 → ( .r ‘ 𝐸 ) = ( .r ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) ) |
| 71 |
70
|
oveqdr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 ( .r ‘ 𝐸 ) 𝑦 ) = ( 𝑥 ( .r ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ) 𝑦 ) ) |
| 72 |
43 67 69 71
|
fldpropd |
⊢ ( 𝜑 → ( 𝐸 ∈ Field ↔ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐺 ) ∈ Field ) ) |
| 73 |
65 72
|
mpbird |
⊢ ( 𝜑 → 𝐸 ∈ Field ) |