| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fldextrspun.k |
⊢ 𝐾 = ( 𝐿 ↾s 𝐹 ) |
| 2 |
|
fldextrspun.i |
⊢ 𝐼 = ( 𝐿 ↾s 𝐺 ) |
| 3 |
|
fldextrspun.j |
⊢ 𝐽 = ( 𝐿 ↾s 𝐻 ) |
| 4 |
|
fldextrspun.2 |
⊢ ( 𝜑 → 𝐿 ∈ Field ) |
| 5 |
|
fldextrspun.3 |
⊢ ( 𝜑 → 𝐹 ∈ ( SubDRing ‘ 𝐼 ) ) |
| 6 |
|
fldextrspun.4 |
⊢ ( 𝜑 → 𝐹 ∈ ( SubDRing ‘ 𝐽 ) ) |
| 7 |
|
fldextrspun.5 |
⊢ ( 𝜑 → 𝐺 ∈ ( SubDRing ‘ 𝐿 ) ) |
| 8 |
|
fldextrspun.6 |
⊢ ( 𝜑 → 𝐻 ∈ ( SubDRing ‘ 𝐿 ) ) |
| 9 |
|
fldextrspundglemul.7 |
⊢ ( 𝜑 → ( 𝐽 [:] 𝐾 ) ∈ ℕ0 ) |
| 10 |
|
fldextrspundglemul.1 |
⊢ 𝐸 = ( 𝐿 ↾s ( 𝐿 fldGen ( 𝐺 ∪ 𝐻 ) ) ) |
| 11 |
|
eqid |
⊢ ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 ) |
| 12 |
11
|
sdrgss |
⊢ ( 𝐻 ∈ ( SubDRing ‘ 𝐿 ) → 𝐻 ⊆ ( Base ‘ 𝐿 ) ) |
| 13 |
8 12
|
syl |
⊢ ( 𝜑 → 𝐻 ⊆ ( Base ‘ 𝐿 ) ) |
| 14 |
11 2 10 4 7 13
|
fldgenfldext |
⊢ ( 𝜑 → 𝐸 /FldExt 𝐼 ) |
| 15 |
|
extdgcl |
⊢ ( 𝐸 /FldExt 𝐼 → ( 𝐸 [:] 𝐼 ) ∈ ℕ0* ) |
| 16 |
|
xnn0xr |
⊢ ( ( 𝐸 [:] 𝐼 ) ∈ ℕ0* → ( 𝐸 [:] 𝐼 ) ∈ ℝ* ) |
| 17 |
14 15 16
|
3syl |
⊢ ( 𝜑 → ( 𝐸 [:] 𝐼 ) ∈ ℝ* ) |
| 18 |
3 4 8 6 1
|
fldsdrgfldext2 |
⊢ ( 𝜑 → 𝐽 /FldExt 𝐾 ) |
| 19 |
|
extdgcl |
⊢ ( 𝐽 /FldExt 𝐾 → ( 𝐽 [:] 𝐾 ) ∈ ℕ0* ) |
| 20 |
|
xnn0xr |
⊢ ( ( 𝐽 [:] 𝐾 ) ∈ ℕ0* → ( 𝐽 [:] 𝐾 ) ∈ ℝ* ) |
| 21 |
18 19 20
|
3syl |
⊢ ( 𝜑 → ( 𝐽 [:] 𝐾 ) ∈ ℝ* ) |
| 22 |
2 4 7 5 1
|
fldsdrgfldext2 |
⊢ ( 𝜑 → 𝐼 /FldExt 𝐾 ) |
| 23 |
|
extdgcl |
⊢ ( 𝐼 /FldExt 𝐾 → ( 𝐼 [:] 𝐾 ) ∈ ℕ0* ) |
| 24 |
|
xnn0xrge0 |
⊢ ( ( 𝐼 [:] 𝐾 ) ∈ ℕ0* → ( 𝐼 [:] 𝐾 ) ∈ ( 0 [,] +∞ ) ) |
| 25 |
22 23 24
|
3syl |
⊢ ( 𝜑 → ( 𝐼 [:] 𝐾 ) ∈ ( 0 [,] +∞ ) ) |
| 26 |
|
elxrge0 |
⊢ ( ( 𝐼 [:] 𝐾 ) ∈ ( 0 [,] +∞ ) ↔ ( ( 𝐼 [:] 𝐾 ) ∈ ℝ* ∧ 0 ≤ ( 𝐼 [:] 𝐾 ) ) ) |
| 27 |
25 26
|
sylib |
⊢ ( 𝜑 → ( ( 𝐼 [:] 𝐾 ) ∈ ℝ* ∧ 0 ≤ ( 𝐼 [:] 𝐾 ) ) ) |
| 28 |
1 2 3 4 5 6 7 8 9 10
|
fldextrspundgle |
⊢ ( 𝜑 → ( 𝐸 [:] 𝐼 ) ≤ ( 𝐽 [:] 𝐾 ) ) |
| 29 |
|
xlemul1a |
⊢ ( ( ( ( 𝐸 [:] 𝐼 ) ∈ ℝ* ∧ ( 𝐽 [:] 𝐾 ) ∈ ℝ* ∧ ( ( 𝐼 [:] 𝐾 ) ∈ ℝ* ∧ 0 ≤ ( 𝐼 [:] 𝐾 ) ) ) ∧ ( 𝐸 [:] 𝐼 ) ≤ ( 𝐽 [:] 𝐾 ) ) → ( ( 𝐸 [:] 𝐼 ) ·e ( 𝐼 [:] 𝐾 ) ) ≤ ( ( 𝐽 [:] 𝐾 ) ·e ( 𝐼 [:] 𝐾 ) ) ) |
| 30 |
17 21 27 28 29
|
syl31anc |
⊢ ( 𝜑 → ( ( 𝐸 [:] 𝐼 ) ·e ( 𝐼 [:] 𝐾 ) ) ≤ ( ( 𝐽 [:] 𝐾 ) ·e ( 𝐼 [:] 𝐾 ) ) ) |
| 31 |
|
extdgmul |
⊢ ( ( 𝐸 /FldExt 𝐼 ∧ 𝐼 /FldExt 𝐾 ) → ( 𝐸 [:] 𝐾 ) = ( ( 𝐸 [:] 𝐼 ) ·e ( 𝐼 [:] 𝐾 ) ) ) |
| 32 |
14 22 31
|
syl2anc |
⊢ ( 𝜑 → ( 𝐸 [:] 𝐾 ) = ( ( 𝐸 [:] 𝐼 ) ·e ( 𝐼 [:] 𝐾 ) ) ) |
| 33 |
|
xnn0xr |
⊢ ( ( 𝐼 [:] 𝐾 ) ∈ ℕ0* → ( 𝐼 [:] 𝐾 ) ∈ ℝ* ) |
| 34 |
22 23 33
|
3syl |
⊢ ( 𝜑 → ( 𝐼 [:] 𝐾 ) ∈ ℝ* ) |
| 35 |
|
xmulcom |
⊢ ( ( ( 𝐼 [:] 𝐾 ) ∈ ℝ* ∧ ( 𝐽 [:] 𝐾 ) ∈ ℝ* ) → ( ( 𝐼 [:] 𝐾 ) ·e ( 𝐽 [:] 𝐾 ) ) = ( ( 𝐽 [:] 𝐾 ) ·e ( 𝐼 [:] 𝐾 ) ) ) |
| 36 |
34 21 35
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐼 [:] 𝐾 ) ·e ( 𝐽 [:] 𝐾 ) ) = ( ( 𝐽 [:] 𝐾 ) ·e ( 𝐼 [:] 𝐾 ) ) ) |
| 37 |
30 32 36
|
3brtr4d |
⊢ ( 𝜑 → ( 𝐸 [:] 𝐾 ) ≤ ( ( 𝐼 [:] 𝐾 ) ·e ( 𝐽 [:] 𝐾 ) ) ) |