| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fldextrspun.k |
|- K = ( L |`s F ) |
| 2 |
|
fldextrspun.i |
|- I = ( L |`s G ) |
| 3 |
|
fldextrspun.j |
|- J = ( L |`s H ) |
| 4 |
|
fldextrspun.2 |
|- ( ph -> L e. Field ) |
| 5 |
|
fldextrspun.3 |
|- ( ph -> F e. ( SubDRing ` I ) ) |
| 6 |
|
fldextrspun.4 |
|- ( ph -> F e. ( SubDRing ` J ) ) |
| 7 |
|
fldextrspun.5 |
|- ( ph -> G e. ( SubDRing ` L ) ) |
| 8 |
|
fldextrspun.6 |
|- ( ph -> H e. ( SubDRing ` L ) ) |
| 9 |
|
fldextrspundglemul.7 |
|- ( ph -> ( J [:] K ) e. NN0 ) |
| 10 |
|
fldextrspundglemul.1 |
|- E = ( L |`s ( L fldGen ( G u. H ) ) ) |
| 11 |
|
eqid |
|- ( Base ` L ) = ( Base ` L ) |
| 12 |
11
|
sdrgss |
|- ( H e. ( SubDRing ` L ) -> H C_ ( Base ` L ) ) |
| 13 |
8 12
|
syl |
|- ( ph -> H C_ ( Base ` L ) ) |
| 14 |
11 2 10 4 7 13
|
fldgenfldext |
|- ( ph -> E /FldExt I ) |
| 15 |
|
extdgcl |
|- ( E /FldExt I -> ( E [:] I ) e. NN0* ) |
| 16 |
|
xnn0xr |
|- ( ( E [:] I ) e. NN0* -> ( E [:] I ) e. RR* ) |
| 17 |
14 15 16
|
3syl |
|- ( ph -> ( E [:] I ) e. RR* ) |
| 18 |
3 4 8 6 1
|
fldsdrgfldext2 |
|- ( ph -> J /FldExt K ) |
| 19 |
|
extdgcl |
|- ( J /FldExt K -> ( J [:] K ) e. NN0* ) |
| 20 |
|
xnn0xr |
|- ( ( J [:] K ) e. NN0* -> ( J [:] K ) e. RR* ) |
| 21 |
18 19 20
|
3syl |
|- ( ph -> ( J [:] K ) e. RR* ) |
| 22 |
2 4 7 5 1
|
fldsdrgfldext2 |
|- ( ph -> I /FldExt K ) |
| 23 |
|
extdgcl |
|- ( I /FldExt K -> ( I [:] K ) e. NN0* ) |
| 24 |
|
xnn0xrge0 |
|- ( ( I [:] K ) e. NN0* -> ( I [:] K ) e. ( 0 [,] +oo ) ) |
| 25 |
22 23 24
|
3syl |
|- ( ph -> ( I [:] K ) e. ( 0 [,] +oo ) ) |
| 26 |
|
elxrge0 |
|- ( ( I [:] K ) e. ( 0 [,] +oo ) <-> ( ( I [:] K ) e. RR* /\ 0 <_ ( I [:] K ) ) ) |
| 27 |
25 26
|
sylib |
|- ( ph -> ( ( I [:] K ) e. RR* /\ 0 <_ ( I [:] K ) ) ) |
| 28 |
1 2 3 4 5 6 7 8 9 10
|
fldextrspundgle |
|- ( ph -> ( E [:] I ) <_ ( J [:] K ) ) |
| 29 |
|
xlemul1a |
|- ( ( ( ( E [:] I ) e. RR* /\ ( J [:] K ) e. RR* /\ ( ( I [:] K ) e. RR* /\ 0 <_ ( I [:] K ) ) ) /\ ( E [:] I ) <_ ( J [:] K ) ) -> ( ( E [:] I ) *e ( I [:] K ) ) <_ ( ( J [:] K ) *e ( I [:] K ) ) ) |
| 30 |
17 21 27 28 29
|
syl31anc |
|- ( ph -> ( ( E [:] I ) *e ( I [:] K ) ) <_ ( ( J [:] K ) *e ( I [:] K ) ) ) |
| 31 |
|
extdgmul |
|- ( ( E /FldExt I /\ I /FldExt K ) -> ( E [:] K ) = ( ( E [:] I ) *e ( I [:] K ) ) ) |
| 32 |
14 22 31
|
syl2anc |
|- ( ph -> ( E [:] K ) = ( ( E [:] I ) *e ( I [:] K ) ) ) |
| 33 |
|
xnn0xr |
|- ( ( I [:] K ) e. NN0* -> ( I [:] K ) e. RR* ) |
| 34 |
22 23 33
|
3syl |
|- ( ph -> ( I [:] K ) e. RR* ) |
| 35 |
|
xmulcom |
|- ( ( ( I [:] K ) e. RR* /\ ( J [:] K ) e. RR* ) -> ( ( I [:] K ) *e ( J [:] K ) ) = ( ( J [:] K ) *e ( I [:] K ) ) ) |
| 36 |
34 21 35
|
syl2anc |
|- ( ph -> ( ( I [:] K ) *e ( J [:] K ) ) = ( ( J [:] K ) *e ( I [:] K ) ) ) |
| 37 |
30 32 36
|
3brtr4d |
|- ( ph -> ( E [:] K ) <_ ( ( I [:] K ) *e ( J [:] K ) ) ) |