| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fldextrspun.k |
|- K = ( L |`s F ) |
| 2 |
|
fldextrspun.i |
|- I = ( L |`s G ) |
| 3 |
|
fldextrspun.j |
|- J = ( L |`s H ) |
| 4 |
|
fldextrspun.2 |
|- ( ph -> L e. Field ) |
| 5 |
|
fldextrspun.3 |
|- ( ph -> F e. ( SubDRing ` I ) ) |
| 6 |
|
fldextrspun.4 |
|- ( ph -> F e. ( SubDRing ` J ) ) |
| 7 |
|
fldextrspun.5 |
|- ( ph -> G e. ( SubDRing ` L ) ) |
| 8 |
|
fldextrspun.6 |
|- ( ph -> H e. ( SubDRing ` L ) ) |
| 9 |
|
fldextrspundglemul.7 |
|- ( ph -> ( J [:] K ) e. NN0 ) |
| 10 |
|
fldextrspundglemul.1 |
|- E = ( L |`s ( L fldGen ( G u. H ) ) ) |
| 11 |
|
fldextrspundgledvds.1 |
|- ( ph -> ( I [:] K ) e. NN ) |
| 12 |
|
eqid |
|- ( Base ` L ) = ( Base ` L ) |
| 13 |
12
|
sdrgss |
|- ( H e. ( SubDRing ` L ) -> H C_ ( Base ` L ) ) |
| 14 |
8 13
|
syl |
|- ( ph -> H C_ ( Base ` L ) ) |
| 15 |
12 2 10 4 7 14
|
fldgenfldext |
|- ( ph -> E /FldExt I ) |
| 16 |
|
extdgcl |
|- ( E /FldExt I -> ( E [:] I ) e. NN0* ) |
| 17 |
15 16
|
syl |
|- ( ph -> ( E [:] I ) e. NN0* ) |
| 18 |
|
elxnn0 |
|- ( ( E [:] I ) e. NN0* <-> ( ( E [:] I ) e. NN0 \/ ( E [:] I ) = +oo ) ) |
| 19 |
17 18
|
sylib |
|- ( ph -> ( ( E [:] I ) e. NN0 \/ ( E [:] I ) = +oo ) ) |
| 20 |
2 4 7 5 1
|
fldsdrgfldext2 |
|- ( ph -> I /FldExt K ) |
| 21 |
|
extdgmul |
|- ( ( E /FldExt I /\ I /FldExt K ) -> ( E [:] K ) = ( ( E [:] I ) *e ( I [:] K ) ) ) |
| 22 |
15 20 21
|
syl2anc |
|- ( ph -> ( E [:] K ) = ( ( E [:] I ) *e ( I [:] K ) ) ) |
| 23 |
22
|
adantr |
|- ( ( ph /\ ( E [:] I ) = +oo ) -> ( E [:] K ) = ( ( E [:] I ) *e ( I [:] K ) ) ) |
| 24 |
|
simpr |
|- ( ( ph /\ ( E [:] I ) = +oo ) -> ( E [:] I ) = +oo ) |
| 25 |
24
|
oveq1d |
|- ( ( ph /\ ( E [:] I ) = +oo ) -> ( ( E [:] I ) *e ( I [:] K ) ) = ( +oo *e ( I [:] K ) ) ) |
| 26 |
11
|
nnred |
|- ( ph -> ( I [:] K ) e. RR ) |
| 27 |
26
|
rexrd |
|- ( ph -> ( I [:] K ) e. RR* ) |
| 28 |
27
|
adantr |
|- ( ( ph /\ ( E [:] I ) = +oo ) -> ( I [:] K ) e. RR* ) |
| 29 |
11
|
nngt0d |
|- ( ph -> 0 < ( I [:] K ) ) |
| 30 |
29
|
adantr |
|- ( ( ph /\ ( E [:] I ) = +oo ) -> 0 < ( I [:] K ) ) |
| 31 |
|
xmulpnf2 |
|- ( ( ( I [:] K ) e. RR* /\ 0 < ( I [:] K ) ) -> ( +oo *e ( I [:] K ) ) = +oo ) |
| 32 |
28 30 31
|
syl2anc |
|- ( ( ph /\ ( E [:] I ) = +oo ) -> ( +oo *e ( I [:] K ) ) = +oo ) |
| 33 |
23 25 32
|
3eqtrd |
|- ( ( ph /\ ( E [:] I ) = +oo ) -> ( E [:] K ) = +oo ) |
| 34 |
4
|
flddrngd |
|- ( ph -> L e. DivRing ) |
| 35 |
12
|
sdrgss |
|- ( G e. ( SubDRing ` L ) -> G C_ ( Base ` L ) ) |
| 36 |
7 35
|
syl |
|- ( ph -> G C_ ( Base ` L ) ) |
| 37 |
36 14
|
unssd |
|- ( ph -> ( G u. H ) C_ ( Base ` L ) ) |
| 38 |
12 34 37
|
fldgensdrg |
|- ( ph -> ( L fldGen ( G u. H ) ) e. ( SubDRing ` L ) ) |
| 39 |
|
eqid |
|- ( RingSpan ` L ) = ( RingSpan ` L ) |
| 40 |
|
eqid |
|- ( ( RingSpan ` L ) ` ( G u. H ) ) = ( ( RingSpan ` L ) ` ( G u. H ) ) |
| 41 |
|
eqid |
|- ( L |`s ( ( RingSpan ` L ) ` ( G u. H ) ) ) = ( L |`s ( ( RingSpan ` L ) ` ( G u. H ) ) ) |
| 42 |
1 2 3 4 5 6 7 8 9 39 40 41
|
fldextrspunlem2 |
|- ( ph -> ( ( RingSpan ` L ) ` ( G u. H ) ) = ( L fldGen ( G u. H ) ) ) |
| 43 |
42
|
oveq2d |
|- ( ph -> ( L |`s ( ( RingSpan ` L ) ` ( G u. H ) ) ) = ( L |`s ( L fldGen ( G u. H ) ) ) ) |
| 44 |
10 43
|
eqtr4id |
|- ( ph -> E = ( L |`s ( ( RingSpan ` L ) ` ( G u. H ) ) ) ) |
| 45 |
1 2 3 4 5 6 7 8 9 39 40 41
|
fldextrspunfld |
|- ( ph -> ( L |`s ( ( RingSpan ` L ) ` ( G u. H ) ) ) e. Field ) |
| 46 |
44 45
|
eqeltrd |
|- ( ph -> E e. Field ) |
| 47 |
46
|
flddrngd |
|- ( ph -> E e. DivRing ) |
| 48 |
47
|
drngringd |
|- ( ph -> E e. Ring ) |
| 49 |
10
|
oveq1i |
|- ( E |`s F ) = ( ( L |`s ( L fldGen ( G u. H ) ) ) |`s F ) |
| 50 |
|
ovexd |
|- ( ph -> ( L fldGen ( G u. H ) ) e. _V ) |
| 51 |
|
eqid |
|- ( Base ` I ) = ( Base ` I ) |
| 52 |
51
|
sdrgss |
|- ( F e. ( SubDRing ` I ) -> F C_ ( Base ` I ) ) |
| 53 |
5 52
|
syl |
|- ( ph -> F C_ ( Base ` I ) ) |
| 54 |
2 12
|
ressbas2 |
|- ( G C_ ( Base ` L ) -> G = ( Base ` I ) ) |
| 55 |
36 54
|
syl |
|- ( ph -> G = ( Base ` I ) ) |
| 56 |
53 55
|
sseqtrrd |
|- ( ph -> F C_ G ) |
| 57 |
|
ssun1 |
|- G C_ ( G u. H ) |
| 58 |
57
|
a1i |
|- ( ph -> G C_ ( G u. H ) ) |
| 59 |
56 58
|
sstrd |
|- ( ph -> F C_ ( G u. H ) ) |
| 60 |
12 34 37
|
fldgenssid |
|- ( ph -> ( G u. H ) C_ ( L fldGen ( G u. H ) ) ) |
| 61 |
59 60
|
sstrd |
|- ( ph -> F C_ ( L fldGen ( G u. H ) ) ) |
| 62 |
|
ressabs |
|- ( ( ( L fldGen ( G u. H ) ) e. _V /\ F C_ ( L fldGen ( G u. H ) ) ) -> ( ( L |`s ( L fldGen ( G u. H ) ) ) |`s F ) = ( L |`s F ) ) |
| 63 |
50 61 62
|
syl2anc |
|- ( ph -> ( ( L |`s ( L fldGen ( G u. H ) ) ) |`s F ) = ( L |`s F ) ) |
| 64 |
49 63
|
eqtrid |
|- ( ph -> ( E |`s F ) = ( L |`s F ) ) |
| 65 |
2
|
oveq1i |
|- ( I |`s F ) = ( ( L |`s G ) |`s F ) |
| 66 |
|
ressabs |
|- ( ( G e. ( SubDRing ` L ) /\ F C_ G ) -> ( ( L |`s G ) |`s F ) = ( L |`s F ) ) |
| 67 |
7 56 66
|
syl2anc |
|- ( ph -> ( ( L |`s G ) |`s F ) = ( L |`s F ) ) |
| 68 |
65 67
|
eqtrid |
|- ( ph -> ( I |`s F ) = ( L |`s F ) ) |
| 69 |
64 68
|
eqtr4d |
|- ( ph -> ( E |`s F ) = ( I |`s F ) ) |
| 70 |
|
eqid |
|- ( I |`s F ) = ( I |`s F ) |
| 71 |
70
|
sdrgdrng |
|- ( F e. ( SubDRing ` I ) -> ( I |`s F ) e. DivRing ) |
| 72 |
5 71
|
syl |
|- ( ph -> ( I |`s F ) e. DivRing ) |
| 73 |
69 72
|
eqeltrd |
|- ( ph -> ( E |`s F ) e. DivRing ) |
| 74 |
73
|
drngringd |
|- ( ph -> ( E |`s F ) e. Ring ) |
| 75 |
12 34 37
|
fldgenssv |
|- ( ph -> ( L fldGen ( G u. H ) ) C_ ( Base ` L ) ) |
| 76 |
10 12
|
ressbas2 |
|- ( ( L fldGen ( G u. H ) ) C_ ( Base ` L ) -> ( L fldGen ( G u. H ) ) = ( Base ` E ) ) |
| 77 |
75 76
|
syl |
|- ( ph -> ( L fldGen ( G u. H ) ) = ( Base ` E ) ) |
| 78 |
61 77
|
sseqtrd |
|- ( ph -> F C_ ( Base ` E ) ) |
| 79 |
34
|
drngringd |
|- ( ph -> L e. Ring ) |
| 80 |
58 60
|
sstrd |
|- ( ph -> G C_ ( L fldGen ( G u. H ) ) ) |
| 81 |
|
sdrgsubrg |
|- ( G e. ( SubDRing ` L ) -> G e. ( SubRing ` L ) ) |
| 82 |
|
eqid |
|- ( 1r ` L ) = ( 1r ` L ) |
| 83 |
82
|
subrg1cl |
|- ( G e. ( SubRing ` L ) -> ( 1r ` L ) e. G ) |
| 84 |
7 81 83
|
3syl |
|- ( ph -> ( 1r ` L ) e. G ) |
| 85 |
80 84
|
sseldd |
|- ( ph -> ( 1r ` L ) e. ( L fldGen ( G u. H ) ) ) |
| 86 |
10 12 82
|
ress1r |
|- ( ( L e. Ring /\ ( 1r ` L ) e. ( L fldGen ( G u. H ) ) /\ ( L fldGen ( G u. H ) ) C_ ( Base ` L ) ) -> ( 1r ` L ) = ( 1r ` E ) ) |
| 87 |
79 85 75 86
|
syl3anc |
|- ( ph -> ( 1r ` L ) = ( 1r ` E ) ) |
| 88 |
2 12 82
|
ress1r |
|- ( ( L e. Ring /\ ( 1r ` L ) e. G /\ G C_ ( Base ` L ) ) -> ( 1r ` L ) = ( 1r ` I ) ) |
| 89 |
79 84 36 88
|
syl3anc |
|- ( ph -> ( 1r ` L ) = ( 1r ` I ) ) |
| 90 |
87 89
|
eqtr3d |
|- ( ph -> ( 1r ` E ) = ( 1r ` I ) ) |
| 91 |
|
sdrgsubrg |
|- ( F e. ( SubDRing ` I ) -> F e. ( SubRing ` I ) ) |
| 92 |
|
eqid |
|- ( 1r ` I ) = ( 1r ` I ) |
| 93 |
92
|
subrg1cl |
|- ( F e. ( SubRing ` I ) -> ( 1r ` I ) e. F ) |
| 94 |
5 91 93
|
3syl |
|- ( ph -> ( 1r ` I ) e. F ) |
| 95 |
90 94
|
eqeltrd |
|- ( ph -> ( 1r ` E ) e. F ) |
| 96 |
|
eqid |
|- ( Base ` E ) = ( Base ` E ) |
| 97 |
|
eqid |
|- ( 1r ` E ) = ( 1r ` E ) |
| 98 |
96 97
|
issubrg |
|- ( F e. ( SubRing ` E ) <-> ( ( E e. Ring /\ ( E |`s F ) e. Ring ) /\ ( F C_ ( Base ` E ) /\ ( 1r ` E ) e. F ) ) ) |
| 99 |
48 74 78 95 98
|
syl22anbrc |
|- ( ph -> F e. ( SubRing ` E ) ) |
| 100 |
|
issdrg |
|- ( F e. ( SubDRing ` E ) <-> ( E e. DivRing /\ F e. ( SubRing ` E ) /\ ( E |`s F ) e. DivRing ) ) |
| 101 |
47 99 73 100
|
syl3anbrc |
|- ( ph -> F e. ( SubDRing ` E ) ) |
| 102 |
10 4 38 101 1
|
fldsdrgfldext2 |
|- ( ph -> E /FldExt K ) |
| 103 |
|
extdgcl |
|- ( E /FldExt K -> ( E [:] K ) e. NN0* ) |
| 104 |
102 103
|
syl |
|- ( ph -> ( E [:] K ) e. NN0* ) |
| 105 |
11
|
nnnn0d |
|- ( ph -> ( I [:] K ) e. NN0 ) |
| 106 |
105 9
|
nn0mulcld |
|- ( ph -> ( ( I [:] K ) x. ( J [:] K ) ) e. NN0 ) |
| 107 |
1 2 3 4 5 6 7 8 9 10
|
fldextrspundglemul |
|- ( ph -> ( E [:] K ) <_ ( ( I [:] K ) *e ( J [:] K ) ) ) |
| 108 |
9
|
nn0red |
|- ( ph -> ( J [:] K ) e. RR ) |
| 109 |
|
rexmul |
|- ( ( ( I [:] K ) e. RR /\ ( J [:] K ) e. RR ) -> ( ( I [:] K ) *e ( J [:] K ) ) = ( ( I [:] K ) x. ( J [:] K ) ) ) |
| 110 |
26 108 109
|
syl2anc |
|- ( ph -> ( ( I [:] K ) *e ( J [:] K ) ) = ( ( I [:] K ) x. ( J [:] K ) ) ) |
| 111 |
107 110
|
breqtrd |
|- ( ph -> ( E [:] K ) <_ ( ( I [:] K ) x. ( J [:] K ) ) ) |
| 112 |
|
xnn0lenn0nn0 |
|- ( ( ( E [:] K ) e. NN0* /\ ( ( I [:] K ) x. ( J [:] K ) ) e. NN0 /\ ( E [:] K ) <_ ( ( I [:] K ) x. ( J [:] K ) ) ) -> ( E [:] K ) e. NN0 ) |
| 113 |
104 106 111 112
|
syl3anc |
|- ( ph -> ( E [:] K ) e. NN0 ) |
| 114 |
113
|
nn0red |
|- ( ph -> ( E [:] K ) e. RR ) |
| 115 |
114
|
adantr |
|- ( ( ph /\ ( E [:] I ) = +oo ) -> ( E [:] K ) e. RR ) |
| 116 |
115
|
renepnfd |
|- ( ( ph /\ ( E [:] I ) = +oo ) -> ( E [:] K ) =/= +oo ) |
| 117 |
116
|
neneqd |
|- ( ( ph /\ ( E [:] I ) = +oo ) -> -. ( E [:] K ) = +oo ) |
| 118 |
33 117
|
pm2.65da |
|- ( ph -> -. ( E [:] I ) = +oo ) |
| 119 |
19 118
|
olcnd |
|- ( ph -> ( E [:] I ) e. NN0 ) |