Metamath Proof Explorer


Theorem fldextrspundgdvdslem

Description: Lemma for fldextrspundgdvds . (Contributed by Thierry Arnoux, 19-Oct-2025)

Ref Expression
Hypotheses fldextrspun.k K = L 𝑠 F
fldextrspun.i I = L 𝑠 G
fldextrspun.j J = L 𝑠 H
fldextrspun.2 φ L Field
fldextrspun.3 φ F SubDRing I
fldextrspun.4 φ F SubDRing J
fldextrspun.5 φ G SubDRing L
fldextrspun.6 φ H SubDRing L
fldextrspundglemul.7 φ J .:. K 0
fldextrspundglemul.1 E = L 𝑠 L fldGen G H
fldextrspundgledvds.1 φ I .:. K
Assertion fldextrspundgdvdslem φ E .:. I 0

Proof

Step Hyp Ref Expression
1 fldextrspun.k K = L 𝑠 F
2 fldextrspun.i I = L 𝑠 G
3 fldextrspun.j J = L 𝑠 H
4 fldextrspun.2 φ L Field
5 fldextrspun.3 φ F SubDRing I
6 fldextrspun.4 φ F SubDRing J
7 fldextrspun.5 φ G SubDRing L
8 fldextrspun.6 φ H SubDRing L
9 fldextrspundglemul.7 φ J .:. K 0
10 fldextrspundglemul.1 E = L 𝑠 L fldGen G H
11 fldextrspundgledvds.1 φ I .:. K
12 eqid Base L = Base L
13 12 sdrgss H SubDRing L H Base L
14 8 13 syl φ H Base L
15 12 2 10 4 7 14 fldgenfldext φ E /FldExt I
16 extdgcl E /FldExt I E .:. I 0 *
17 15 16 syl φ E .:. I 0 *
18 elxnn0 E .:. I 0 * E .:. I 0 E .:. I = +∞
19 17 18 sylib φ E .:. I 0 E .:. I = +∞
20 2 4 7 5 1 fldsdrgfldext2 φ I /FldExt K
21 extdgmul E /FldExt I I /FldExt K E .:. K = E : I 𝑒 I : K
22 15 20 21 syl2anc φ E .:. K = E : I 𝑒 I : K
23 22 adantr φ E .:. I = +∞ E .:. K = E : I 𝑒 I : K
24 simpr φ E .:. I = +∞ E .:. I = +∞
25 24 oveq1d φ E .:. I = +∞ E : I 𝑒 I : K = +∞ 𝑒 I : K
26 11 nnred φ I .:. K
27 26 rexrd φ I .:. K *
28 27 adantr φ E .:. I = +∞ I .:. K *
29 11 nngt0d φ 0 < I .:. K
30 29 adantr φ E .:. I = +∞ 0 < I .:. K
31 xmulpnf2 I .:. K * 0 < I .:. K +∞ 𝑒 I : K = +∞
32 28 30 31 syl2anc φ E .:. I = +∞ +∞ 𝑒 I : K = +∞
33 23 25 32 3eqtrd φ E .:. I = +∞ E .:. K = +∞
34 4 flddrngd φ L DivRing
35 12 sdrgss G SubDRing L G Base L
36 7 35 syl φ G Base L
37 36 14 unssd φ G H Base L
38 12 34 37 fldgensdrg φ L fldGen G H SubDRing L
39 eqid RingSpan L = RingSpan L
40 eqid RingSpan L G H = RingSpan L G H
41 eqid L 𝑠 RingSpan L G H = L 𝑠 RingSpan L G H
42 1 2 3 4 5 6 7 8 9 39 40 41 fldextrspunlem2 φ RingSpan L G H = L fldGen G H
43 42 oveq2d φ L 𝑠 RingSpan L G H = L 𝑠 L fldGen G H
44 10 43 eqtr4id φ E = L 𝑠 RingSpan L G H
45 1 2 3 4 5 6 7 8 9 39 40 41 fldextrspunfld φ L 𝑠 RingSpan L G H Field
46 44 45 eqeltrd φ E Field
47 46 flddrngd φ E DivRing
48 47 drngringd φ E Ring
49 10 oveq1i E 𝑠 F = L 𝑠 L fldGen G H 𝑠 F
50 ovexd φ L fldGen G H V
51 eqid Base I = Base I
52 51 sdrgss F SubDRing I F Base I
53 5 52 syl φ F Base I
54 2 12 ressbas2 G Base L G = Base I
55 36 54 syl φ G = Base I
56 53 55 sseqtrrd φ F G
57 ssun1 G G H
58 57 a1i φ G G H
59 56 58 sstrd φ F G H
60 12 34 37 fldgenssid φ G H L fldGen G H
61 59 60 sstrd φ F L fldGen G H
62 ressabs L fldGen G H V F L fldGen G H L 𝑠 L fldGen G H 𝑠 F = L 𝑠 F
63 50 61 62 syl2anc φ L 𝑠 L fldGen G H 𝑠 F = L 𝑠 F
64 49 63 eqtrid φ E 𝑠 F = L 𝑠 F
65 2 oveq1i I 𝑠 F = L 𝑠 G 𝑠 F
66 ressabs G SubDRing L F G L 𝑠 G 𝑠 F = L 𝑠 F
67 7 56 66 syl2anc φ L 𝑠 G 𝑠 F = L 𝑠 F
68 65 67 eqtrid φ I 𝑠 F = L 𝑠 F
69 64 68 eqtr4d φ E 𝑠 F = I 𝑠 F
70 eqid I 𝑠 F = I 𝑠 F
71 70 sdrgdrng F SubDRing I I 𝑠 F DivRing
72 5 71 syl φ I 𝑠 F DivRing
73 69 72 eqeltrd φ E 𝑠 F DivRing
74 73 drngringd φ E 𝑠 F Ring
75 12 34 37 fldgenssv φ L fldGen G H Base L
76 10 12 ressbas2 L fldGen G H Base L L fldGen G H = Base E
77 75 76 syl φ L fldGen G H = Base E
78 61 77 sseqtrd φ F Base E
79 34 drngringd φ L Ring
80 58 60 sstrd φ G L fldGen G H
81 sdrgsubrg G SubDRing L G SubRing L
82 eqid 1 L = 1 L
83 82 subrg1cl G SubRing L 1 L G
84 7 81 83 3syl φ 1 L G
85 80 84 sseldd φ 1 L L fldGen G H
86 10 12 82 ress1r L Ring 1 L L fldGen G H L fldGen G H Base L 1 L = 1 E
87 79 85 75 86 syl3anc φ 1 L = 1 E
88 2 12 82 ress1r L Ring 1 L G G Base L 1 L = 1 I
89 79 84 36 88 syl3anc φ 1 L = 1 I
90 87 89 eqtr3d φ 1 E = 1 I
91 sdrgsubrg F SubDRing I F SubRing I
92 eqid 1 I = 1 I
93 92 subrg1cl F SubRing I 1 I F
94 5 91 93 3syl φ 1 I F
95 90 94 eqeltrd φ 1 E F
96 eqid Base E = Base E
97 eqid 1 E = 1 E
98 96 97 issubrg F SubRing E E Ring E 𝑠 F Ring F Base E 1 E F
99 48 74 78 95 98 syl22anbrc φ F SubRing E
100 issdrg F SubDRing E E DivRing F SubRing E E 𝑠 F DivRing
101 47 99 73 100 syl3anbrc φ F SubDRing E
102 10 4 38 101 1 fldsdrgfldext2 φ E /FldExt K
103 extdgcl E /FldExt K E .:. K 0 *
104 102 103 syl φ E .:. K 0 *
105 11 nnnn0d φ I .:. K 0
106 105 9 nn0mulcld φ I : K J : K 0
107 1 2 3 4 5 6 7 8 9 10 fldextrspundglemul φ E .:. K I : K 𝑒 J : K
108 9 nn0red φ J .:. K
109 rexmul I .:. K J .:. K I : K 𝑒 J : K = I : K J : K
110 26 108 109 syl2anc φ I : K 𝑒 J : K = I : K J : K
111 107 110 breqtrd φ E .:. K I : K J : K
112 xnn0lenn0nn0 E .:. K 0 * I : K J : K 0 E .:. K I : K J : K E .:. K 0
113 104 106 111 112 syl3anc φ E .:. K 0
114 113 nn0red φ E .:. K
115 114 adantr φ E .:. I = +∞ E .:. K
116 115 renepnfd φ E .:. I = +∞ E .:. K +∞
117 116 neneqd φ E .:. I = +∞ ¬ E .:. K = +∞
118 33 117 pm2.65da φ ¬ E .:. I = +∞
119 19 118 olcnd φ E .:. I 0