Metamath Proof Explorer


Theorem fldextrspundglemul

Description: Given two field extensions I / K and J / K of the same field K , J / K being finite, and the composiste field E = I J , the degree of the extension of the composite field E / K is at most the product of the field extension degrees of I / K and J / K . (Contributed by Thierry Arnoux, 19-Oct-2025)

Ref Expression
Hypotheses fldextrspun.k K = L 𝑠 F
fldextrspun.i I = L 𝑠 G
fldextrspun.j J = L 𝑠 H
fldextrspun.2 φ L Field
fldextrspun.3 φ F SubDRing I
fldextrspun.4 φ F SubDRing J
fldextrspun.5 φ G SubDRing L
fldextrspun.6 φ H SubDRing L
fldextrspundglemul.7 φ J .:. K 0
fldextrspundglemul.1 E = L 𝑠 L fldGen G H
Assertion fldextrspundglemul φ E .:. K I : K 𝑒 J : K

Proof

Step Hyp Ref Expression
1 fldextrspun.k K = L 𝑠 F
2 fldextrspun.i I = L 𝑠 G
3 fldextrspun.j J = L 𝑠 H
4 fldextrspun.2 φ L Field
5 fldextrspun.3 φ F SubDRing I
6 fldextrspun.4 φ F SubDRing J
7 fldextrspun.5 φ G SubDRing L
8 fldextrspun.6 φ H SubDRing L
9 fldextrspundglemul.7 φ J .:. K 0
10 fldextrspundglemul.1 E = L 𝑠 L fldGen G H
11 eqid Base L = Base L
12 11 sdrgss H SubDRing L H Base L
13 8 12 syl φ H Base L
14 11 2 10 4 7 13 fldgenfldext φ E /FldExt I
15 extdgcl E /FldExt I E .:. I 0 *
16 xnn0xr E .:. I 0 * E .:. I *
17 14 15 16 3syl φ E .:. I *
18 3 4 8 6 1 fldsdrgfldext2 φ J /FldExt K
19 extdgcl J /FldExt K J .:. K 0 *
20 xnn0xr J .:. K 0 * J .:. K *
21 18 19 20 3syl φ J .:. K *
22 2 4 7 5 1 fldsdrgfldext2 φ I /FldExt K
23 extdgcl I /FldExt K I .:. K 0 *
24 xnn0xrge0 I .:. K 0 * I .:. K 0 +∞
25 22 23 24 3syl φ I .:. K 0 +∞
26 elxrge0 I .:. K 0 +∞ I .:. K * 0 I .:. K
27 25 26 sylib φ I .:. K * 0 I .:. K
28 1 2 3 4 5 6 7 8 9 10 fldextrspundgle φ E .:. I J .:. K
29 xlemul1a E .:. I * J .:. K * I .:. K * 0 I .:. K E .:. I J .:. K E : I 𝑒 I : K J : K 𝑒 I : K
30 17 21 27 28 29 syl31anc φ E : I 𝑒 I : K J : K 𝑒 I : K
31 extdgmul E /FldExt I I /FldExt K E .:. K = E : I 𝑒 I : K
32 14 22 31 syl2anc φ E .:. K = E : I 𝑒 I : K
33 xnn0xr I .:. K 0 * I .:. K *
34 22 23 33 3syl φ I .:. K *
35 xmulcom I .:. K * J .:. K * I : K 𝑒 J : K = J : K 𝑒 I : K
36 34 21 35 syl2anc φ I : K 𝑒 J : K = J : K 𝑒 I : K
37 30 32 36 3brtr4d φ E .:. K I : K 𝑒 J : K