Metamath Proof Explorer


Theorem fldsdrgfld

Description: A sub-division-ring of a field is itself a field, so it is a subfield. We can therefore use SubDRing to express subfields. (Contributed by Thierry Arnoux, 11-Jan-2025)

Ref Expression
Assertion fldsdrgfld FFieldASubDRingFF𝑠AField

Proof

Step Hyp Ref Expression
1 issdrg ASubDRingFFDivRingASubRingFF𝑠ADivRing
2 1 simp3bi ASubDRingFF𝑠ADivRing
3 2 adantl FFieldASubDRingFF𝑠ADivRing
4 isfld FFieldFDivRingFCRing
5 4 simprbi FFieldFCRing
6 1 simp2bi ASubDRingFASubRingF
7 eqid F𝑠A=F𝑠A
8 7 subrgcrng FCRingASubRingFF𝑠ACRing
9 5 6 8 syl2an FFieldASubDRingFF𝑠ACRing
10 isfld F𝑠AFieldF𝑠ADivRingF𝑠ACRing
11 3 9 10 sylanbrc FFieldASubDRingFF𝑠AField