Description: A sub-division-ring of a field is itself a field, so it is a subfield. We can therefore use SubDRing to express subfields. (Contributed by Thierry Arnoux, 11-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | fldsdrgfld | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issdrg | |
|
2 | 1 | simp3bi | |
3 | 2 | adantl | |
4 | isfld | |
|
5 | 4 | simprbi | |
6 | 1 | simp2bi | |
7 | eqid | |
|
8 | 7 | subrgcrng | |
9 | 5 6 8 | syl2an | |
10 | isfld | |
|
11 | 3 9 10 | sylanbrc | |