Metamath Proof Explorer


Theorem fliftcnv

Description: Converse of the relation F . (Contributed by Mario Carneiro, 23-Dec-2016)

Ref Expression
Hypotheses flift.1 F=ranxXAB
flift.2 φxXAR
flift.3 φxXBS
Assertion fliftcnv φF-1=ranxXBA

Proof

Step Hyp Ref Expression
1 flift.1 F=ranxXAB
2 flift.2 φxXAR
3 flift.3 φxXBS
4 eqid ranxXBA=ranxXBA
5 4 3 2 fliftrel φranxXBAS×R
6 relxp RelS×R
7 relss ranxXBAS×RRelS×RRelranxXBA
8 5 6 7 mpisyl φRelranxXBA
9 relcnv RelF-1
10 8 9 jctil φRelF-1RelranxXBA
11 1 2 3 fliftel φzFyxXz=Ay=B
12 vex yV
13 vex zV
14 12 13 brcnv yF-1zzFy
15 ancom y=Bz=Az=Ay=B
16 15 rexbii xXy=Bz=AxXz=Ay=B
17 11 14 16 3bitr4g φyF-1zxXy=Bz=A
18 4 3 2 fliftel φyranxXBAzxXy=Bz=A
19 17 18 bitr4d φyF-1zyranxXBAz
20 df-br yF-1zyzF-1
21 df-br yranxXBAzyzranxXBA
22 19 20 21 3bitr3g φyzF-1yzranxXBA
23 22 eqrelrdv2 RelF-1RelranxXBAφF-1=ranxXBA
24 10 23 mpancom φF-1=ranxXBA