Metamath Proof Explorer


Theorem flltdivnn0lt

Description: The floor function of a division of a nonnegative integer by a positive integer is less than the division of a greater dividend by the same positive integer. (Contributed by Alexander van der Vekens, 14-Apr-2018)

Ref Expression
Assertion flltdivnn0lt K0N0LK<NKL<NL

Proof

Step Hyp Ref Expression
1 nn0nndivcl K0LKL
2 reflcl KLKL
3 1 2 syl K0LKL
4 3 3adant2 K0N0LKL
5 1 3adant2 K0N0LKL
6 nn0nndivcl N0LNL
7 6 3adant1 K0N0LNL
8 4 5 7 3jca K0N0LKLKLNL
9 8 adantr K0N0LK<NKLKLNL
10 fldivnn0le K0LKLKL
11 10 3adant2 K0N0LKLKL
12 11 adantr K0N0LK<NKLKL
13 simpr K0N0LK<NK<N
14 nn0re K0K
15 nn0re N0N
16 nnre LL
17 nngt0 L0<L
18 16 17 jca LL0<L
19 14 15 18 3anim123i K0N0LKNL0<L
20 19 adantr K0N0LK<NKNL0<L
21 ltdiv1 KNL0<LK<NKL<NL
22 20 21 syl K0N0LK<NK<NKL<NL
23 13 22 mpbid K0N0LK<NKL<NL
24 12 23 jca K0N0LK<NKLKLKL<NL
25 lelttr KLKLNLKLKLKL<NLKL<NL
26 9 24 25 sylc K0N0LK<NKL<NL
27 26 ex K0N0LK<NKL<NL