Metamath Proof Explorer


Theorem flt0

Description: A counterexample for FLT does not exist for N = 0 . (Contributed by SN, 20-Aug-2024)

Ref Expression
Hypotheses flt0.a φA
flt0.b φB
flt0.c φC
flt0.n φN0
flt0.1 φAN+BN=CN
Assertion flt0 φN

Proof

Step Hyp Ref Expression
1 flt0.a φA
2 flt0.b φB
3 flt0.c φC
4 flt0.n φN0
5 flt0.1 φAN+BN=CN
6 1p1e2 1+1=2
7 sn-1ne2 12
8 7 necomi 21
9 6 8 eqnetri 1+11
10 9 a1i φ1+11
11 1 exp0d φA0=1
12 2 exp0d φB0=1
13 11 12 oveq12d φA0+B0=1+1
14 3 exp0d φC0=1
15 10 13 14 3netr4d φA0+B0C0
16 oveq2 N=0AN=A0
17 oveq2 N=0BN=B0
18 16 17 oveq12d N=0AN+BN=A0+B0
19 oveq2 N=0CN=C0
20 18 19 eqeq12d N=0AN+BN=CNA0+B0=C0
21 5 20 syl5ibcom φN=0A0+B0=C0
22 21 imp φN=0A0+B0=C0
23 15 22 mteqand φN0
24 elnnne0 NN0N0
25 4 23 24 sylanbrc φN