Metamath Proof Explorer


Theorem flt4lem4

Description: If the product of two coprime factors is a perfect square, the factors are perfect squares. (Contributed by SN, 22-Aug-2024)

Ref Expression
Hypotheses flt4lem4.a φA
flt4lem4.b φB
flt4lem4.c φC
flt4lem4.1 φAgcdB=1
flt4lem4.2 φAB=C2
Assertion flt4lem4 φA=AgcdC2B=BgcdC2

Proof

Step Hyp Ref Expression
1 flt4lem4.a φA
2 flt4lem4.b φB
3 flt4lem4.c φC
4 flt4lem4.1 φAgcdB=1
5 flt4lem4.2 φAB=C2
6 5 eqcomd φC2=AB
7 1 nnnn0d φA0
8 2 nnnn0d φB0
9 8 nn0zd φB
10 3 nnnn0d φC0
11 4 oveq1d φAgcdBgcdC=1gcdC
12 10 nn0zd φC
13 1gcd C1gcdC=1
14 12 13 syl φ1gcdC=1
15 11 14 eqtrd φAgcdBgcdC=1
16 coprimeprodsq A0BC0AgcdBgcdC=1C2=ABA=AgcdC2
17 7 9 10 15 16 syl31anc φC2=ABA=AgcdC2
18 6 17 mpd φA=AgcdC2
19 1 nnzd φA
20 coprimeprodsq2 AB0C0AgcdBgcdC=1C2=ABB=BgcdC2
21 19 8 10 15 20 syl31anc φC2=ABB=BgcdC2
22 6 21 mpd φB=BgcdC2
23 18 22 jca φA=AgcdC2B=BgcdC2