Description: If the product of two coprime factors is a perfect square, the factors are perfect squares. (Contributed by SN, 22-Aug-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | flt4lem4.a | |
|
flt4lem4.b | |
||
flt4lem4.c | |
||
flt4lem4.1 | |
||
flt4lem4.2 | |
||
Assertion | flt4lem4 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flt4lem4.a | |
|
2 | flt4lem4.b | |
|
3 | flt4lem4.c | |
|
4 | flt4lem4.1 | |
|
5 | flt4lem4.2 | |
|
6 | 5 | eqcomd | |
7 | 1 | nnnn0d | |
8 | 2 | nnnn0d | |
9 | 8 | nn0zd | |
10 | 3 | nnnn0d | |
11 | 4 | oveq1d | |
12 | 10 | nn0zd | |
13 | 1gcd | |
|
14 | 12 13 | syl | |
15 | 11 14 | eqtrd | |
16 | coprimeprodsq | |
|
17 | 7 9 10 15 16 | syl31anc | |
18 | 6 17 | mpd | |
19 | 1 | nnzd | |
20 | coprimeprodsq2 | |
|
21 | 19 8 10 15 20 | syl31anc | |
22 | 6 21 | mpd | |
23 | 18 22 | jca | |