Metamath Proof Explorer


Theorem fltdiv

Description: A counterexample to FLT stays valid when scaled. The hypotheses are more general than they need to be for convenience. (Contributed by SN, 20-Aug-2024)

Ref Expression
Hypotheses fltdiv.s φS
fltdiv.0 φS0
fltdiv.a φA
fltdiv.b φB
fltdiv.c φC
fltdiv.n φN0
fltdiv.1 φAN+BN=CN
Assertion fltdiv φASN+BSN=CSN

Proof

Step Hyp Ref Expression
1 fltdiv.s φS
2 fltdiv.0 φS0
3 fltdiv.a φA
4 fltdiv.b φB
5 fltdiv.c φC
6 fltdiv.n φN0
7 fltdiv.1 φAN+BN=CN
8 3 6 expcld φAN
9 4 6 expcld φBN
10 1 6 expcld φSN
11 6 nn0zd φN
12 1 2 11 expne0d φSN0
13 8 9 10 12 divdird φAN+BNSN=ANSN+BNSN
14 7 oveq1d φAN+BNSN=CNSN
15 13 14 eqtr3d φANSN+BNSN=CNSN
16 3 1 2 6 expdivd φASN=ANSN
17 4 1 2 6 expdivd φBSN=BNSN
18 16 17 oveq12d φASN+BSN=ANSN+BNSN
19 5 1 2 6 expdivd φCSN=CNSN
20 15 18 19 3eqtr4d φASN+BSN=CSN