Metamath Proof Explorer


Theorem fltdiv

Description: A counterexample to FLT stays valid when scaled. The hypotheses are more general than they need to be for convenience. (Contributed by SN, 20-Aug-2024)

Ref Expression
Hypotheses fltdiv.s φ S
fltdiv.0 φ S 0
fltdiv.a φ A
fltdiv.b φ B
fltdiv.c φ C
fltdiv.n φ N 0
fltdiv.1 φ A N + B N = C N
Assertion fltdiv φ A S N + B S N = C S N

Proof

Step Hyp Ref Expression
1 fltdiv.s φ S
2 fltdiv.0 φ S 0
3 fltdiv.a φ A
4 fltdiv.b φ B
5 fltdiv.c φ C
6 fltdiv.n φ N 0
7 fltdiv.1 φ A N + B N = C N
8 3 6 expcld φ A N
9 4 6 expcld φ B N
10 1 6 expcld φ S N
11 6 nn0zd φ N
12 1 2 11 expne0d φ S N 0
13 8 9 10 12 divdird φ A N + B N S N = A N S N + B N S N
14 7 oveq1d φ A N + B N S N = C N S N
15 13 14 eqtr3d φ A N S N + B N S N = C N S N
16 3 1 2 6 expdivd φ A S N = A N S N
17 4 1 2 6 expdivd φ B S N = B N S N
18 16 17 oveq12d φ A S N + B S N = A N S N + B N S N
19 5 1 2 6 expdivd φ C S N = C N S N
20 15 18 19 3eqtr4d φ A S N + B S N = C S N