Metamath Proof Explorer


Theorem fltltc

Description: ( C ^ N ) is the largest term and therefore B < C . (Contributed by Steven Nguyen, 22-Aug-2023)

Ref Expression
Hypotheses fltltc.a φA
fltltc.b φB
fltltc.c φC
fltltc.n φN3
fltltc.1 φAN+BN=CN
Assertion fltltc φB<C

Proof

Step Hyp Ref Expression
1 fltltc.a φA
2 fltltc.b φB
3 fltltc.c φC
4 fltltc.n φN3
5 fltltc.1 φAN+BN=CN
6 1 nncnd φA
7 eluzge3nn N3N
8 4 7 syl φN
9 8 nnnn0d φN0
10 6 9 expcld φAN
11 2 nncnd φB
12 11 9 expcld φBN
13 10 12 5 mvlladdd φBN=CNAN
14 3 nnred φC
15 14 9 reexpcld φCN
16 1 nnrpd φA+
17 8 nnzd φN
18 16 17 rpexpcld φAN+
19 15 18 ltsubrpd φCNAN<CN
20 13 19 eqbrtrd φBN<CN
21 2 nnrpd φB+
22 3 nnrpd φC+
23 21 22 8 ltexp1d φB<CBN<CN
24 20 23 mpbird φB<C