Metamath Proof Explorer


Theorem fltmul

Description: A counterexample to FLT stays valid when scaled. The hypotheses are more general than they need to be for convenience. (There does not seem to be a standard term for Fermat or Pythagorean triples extended to any N e. NN0 , so the label is more about the context in which this theorem is used). (Contributed by SN, 20-Aug-2024)

Ref Expression
Hypotheses fltmul.s φS
fltmul.a φA
fltmul.b φB
fltmul.c φC
fltmul.n φN0
fltmul.1 φAN+BN=CN
Assertion fltmul φSAN+SBN=SCN

Proof

Step Hyp Ref Expression
1 fltmul.s φS
2 fltmul.a φA
3 fltmul.b φB
4 fltmul.c φC
5 fltmul.n φN0
6 fltmul.1 φAN+BN=CN
7 1 5 expcld φSN
8 2 5 expcld φAN
9 3 5 expcld φBN
10 7 8 9 adddid φSNAN+BN=SNAN+SNBN
11 6 oveq2d φSNAN+BN=SNCN
12 10 11 eqtr3d φSNAN+SNBN=SNCN
13 1 2 5 mulexpd φSAN=SNAN
14 1 3 5 mulexpd φSBN=SNBN
15 13 14 oveq12d φSAN+SBN=SNAN+SNBN
16 1 4 5 mulexpd φSCN=SNCN
17 12 15 16 3eqtr4d φSAN+SBN=SCN