Metamath Proof Explorer


Theorem fmptcof

Description: Version of fmptco where ph needn't be distinct from x . (Contributed by NM, 27-Dec-2014)

Ref Expression
Hypotheses fmptcof.1 φxARB
fmptcof.2 φF=xAR
fmptcof.3 φG=yBS
fmptcof.4 y=RS=T
Assertion fmptcof φGF=xAT

Proof

Step Hyp Ref Expression
1 fmptcof.1 φxARB
2 fmptcof.2 φF=xAR
3 fmptcof.3 φG=yBS
4 fmptcof.4 y=RS=T
5 nfcsb1v _xz/xR
6 5 nfel1 xz/xRB
7 csbeq1a x=zR=z/xR
8 7 eleq1d x=zRBz/xRB
9 6 8 rspc zAxARBz/xRB
10 1 9 mpan9 φzAz/xRB
11 nfcv _zR
12 11 5 7 cbvmpt xAR=zAz/xR
13 2 12 eqtrdi φF=zAz/xR
14 nfcv _wS
15 nfcsb1v _yw/yS
16 csbeq1a y=wS=w/yS
17 14 15 16 cbvmpt yBS=wBw/yS
18 3 17 eqtrdi φG=wBw/yS
19 csbeq1 w=z/xRw/yS=z/xR/yS
20 10 13 18 19 fmptco φGF=zAz/xR/yS
21 nfcv _zR/yS
22 nfcv _xS
23 5 22 nfcsbw _xz/xR/yS
24 7 csbeq1d x=zR/yS=z/xR/yS
25 21 23 24 cbvmpt xAR/yS=zAz/xR/yS
26 20 25 eqtr4di φGF=xAR/yS
27 eqid A=A
28 nfcvd RB_yT
29 28 4 csbiegf RBR/yS=T
30 29 ralimi xARBxAR/yS=T
31 mpteq12 A=AxAR/yS=TxAR/yS=xAT
32 27 30 31 sylancr xARBxAR/yS=xAT
33 1 32 syl φxAR/yS=xAT
34 26 33 eqtrd φGF=xAT